期刊文献+

基于相对全变分模型的纹理图像主结构提取方法研究 被引量:2

Study on the Method of Main Structure Extraction from the Texture Images Via Relative Total Variation
下载PDF
导出
摘要 利用相对全变分模型的方法,通过捕捉主结构和纹理这两种类型在视觉形式上的本质差异,将图像的纹理细节部分去除,达到将主结构从复杂的纹理图像中提取出来的目的。本文通过对样本图像进行模拟实验,对该模型在主结构提取方面的有效性进行验证,同时,在验证模型有效性的过程中,在实验原图加入高斯噪声,验证了该模型在抑制噪声方面也有很好的表现。 In this paper,we use the method of relative total variation model.By capturing the main structure and texture of the two types in the visual form of the essential differences.Remove the texture details of the image,achieving the purpose of the main structure extraction from the complex texture image.In this paper,the simulation of the sample image is carried out to verify the validity of the model in the extraction of the main structure.At the same time,in the process of validating the validity of the model.Add Gaussian noise to the original image to verify the model has a good performance in suppressing noise.
作者 裴亮 苏成琛 谭海 张宝石 PEI Liang;SU Chengchen;TAN Hai;ZHANG Baoshi(Liaoning Technology University,Fuxin 123000,China)
出处 《测绘与空间地理信息》 2019年第1期184-187,190,共5页 Geomatics & Spatial Information Technology
关键词 主结构提取 纹理 相对全变分 提取 main structure extraction texture relative total variation extraction
  • 相关文献

参考文献3

二级参考文献26

  • 1倪虹霞,胡巧多.小波域中值滤波的图像去噪方法[J].大连铁道学院学报,2006,27(4):35-38. 被引量:6
  • 2Tomasi C, Manduchi R. Bilateral Filtering for Gray and Color Images[C]//Proc. of the 6th International Conference on Computer Vision. Bombay, India: [s. n.], 1998.
  • 3Fabrman Z, Fattal R, Lischinski D. Edge-preserving Decompositions for Multi-scale Tone and Detail Manipulation[C]//Proc. of SIGGRANPH’08. Los Angeles, California, USA: ACM Press, 2008.
  • 4Subr K, Soler C, Durand F. Edge-preserving Multiscale Image Decomposition Based on Local Extrema[C]//Proc. of SIGGRAPH’09. Yokohama, Japan: [s. n.], 2009.
  • 5Levin A, Lischinski D, Weiss Y. Colorization Using Optimization[J]. ACM Transactions on Graphics, 2004, 23(3): 689-694.
  • 6Caselles V, Morel J. Introduction to the special issue on partial differential equations and geometry-dri en diffusion on image processing and analysis [J ]. IEEE Transactions on Image Processing, 1998,7 (3) : 269-273.
  • 7Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [J ]. IEEE Transactions on Pattern An- alysis and Machine Intelligence, 1990,12 (7) :629-639.
  • 8Rudin L I, Osher S, Fatemi E. Nonlinear total varition bas- ed noise removal algorithms [J]. Physical D, 1992,60 : 259- 268.
  • 9Wang H, Wang Y, Ren W. Image denoising using anisotr- opic second and fourth order diffusions based on gradient vector convolution[J]. Computer Science and Information Systems,2012,9(4) : 1493-1511.
  • 10Buades A, Coil B, Morel J M. A non-local algorithm for image denoising[J]. IEEE Computer Vision and Pattern Recognition, 2005 (2) : 60-65.

共引文献10

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部