摘要
研究一类带可乘白噪音的非线性耦合复Ginzburg-Landau方程组的随机吸引子,采用解的先验估计和Ball创建的能量方程方法,证明了在初始条件和周期边界条件下它的随机吸引子的存在性。证明过程分成3个步骤:首先对方程组的可乘白噪音进行预处理,使得随机微分项消失;其次证明方程组对应的随机动力系统在H中和V中存在吸收集,最后得到Ginzburg-Landau方程组在H中存在随机吸引子。
In this paper,the random attractor of the nonlinear coupled complex Ginzburg-Landau equations with multiplicative white noise are investigated.Under the initial condition and periodic boundary condition,the existence of random attractors for the complex equations is proven using the prior estimate of solutions and the method of energy equations introduced by Ball.It could be divided into three steps:first,it preprocesses the multiplicative white noise terms,which makes the stochastic differential item disappear.And then,the existence of absorbing set of stochastic dynamical system associated with the nonlinear coupled complex Ginzburg-Landau equations in H and V is proven.Finally,it proves the existence of random attractor when equations are in H.
作者
陈兆蕙
张星红
唐跃龙
CHEN Zhaohui;ZHANG Xinghong;TANG Yuelong(Zhujiang College,South China Agricultural University,Guangzhou 510900,China;Department of Automatic Control,Henan institute of Technology,Henan Xinxiang 453003,China;Mathematics and Computing Sciences,Hunan University of Science And Engineering,Yongzhou Hunan 425199,China)
出处
《南昌大学学报(理科版)》
CAS
北大核心
2018年第5期409-414,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(11401201)
广东省普通高校青年创新人才项目资助项目(2016KQNCX229)
关键词
随机动力系统
随机吸引子
解的先验估计和能量方程方法
可乘白噪音
stochastic dynamical system
random attractor
the prior estimate of solutions and the method of energy equations
multiplicative white noise