期刊文献+

生成对抗网络的血管内超声图像超分辨率重建 被引量:7

Super-resolution construction of intravascular ultrasound images using generative adversarial networks
下载PDF
导出
摘要 针对超声图像分辨率低导致视觉效果差的问题,本文以超分辨率重建为基础,结合生成对抗网络的方法,生成相对原图更加清晰的血管内超声图像,用于辅助医生诊断与治疗。本方法应用生成对抗网络,生成器生成图像,判别器判断图像真伪。其过程:低分辨率图像经过亚像素卷积层r2个特征通道,产生尺寸大小相同的r2个特征图,对每个特征图中相对应的同一像素重新排列成一个r×r的子块,其对应高分辨率图像中的某一个子块,经过放大,产生r2倍的高分辨率图像。生成对抗网络经过不断优化,获得更优质清晰的图像。将本方法(SRGAN)得出的结果与双立方插值(Bicubic)、超分辨率卷积网络(SRCNN)和亚像素卷积网络(ESPCN)等方法比较,其峰值信噪比(PSNR)和结构相似性(SSIM)分别提高2.369dB和1.79%。因此,我们得知:结合生成对抗网络的图像超分辨率重建能获得很好的血管内超声图像诊断视觉效果。 The low-resolution ultrasound images have poor visual effects. Herein we propose a method for generating clearer intravascular ultrasound images based on super-resolution reconstruction combined with generative adversarial networks. We used the generative adversarial networks to generate the images by a generator and to estimate the authenticity of the images by a discriminator. Specifically, the low-resolution image was passed through the sub-pixel convolution layer r2-feature channels to generate r2-feature maps in the same size, followed by realignment of the corresponding pixels in each feature map into r × r sub-blocks, which corresponded to the sub-block in a high-resolution image; after amplification, an image with a r2-time resolution was generated. The generative adversarial networks can obtain a clearer image through continuous optimization. We compared the method (SRGAN) with other methods including Bicubic, super-resolution convolutional network (SRCNN) and efficient sub-pixel convolutional network (ESPCN), and the proposed method resulted in obvious improvements in the peak signal-to-noise ratio (PSNR) by 2.369 dB and in structural similarity index by 1.79% to enhance the diagnostic visual effects of intravascular ultrasound images.
作者 吴洋洋 杨丰 黄靖 刘娅琴 WU Yangyang;YANG Feng;HUANG Jing;LIU Yaqin(Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern MedicalUniversity, Guangzhou 510515, China)
出处 《南方医科大学学报》 CAS CSCD 北大核心 2019年第1期82-87,共6页 Journal of Southern Medical University
基金 国家自然科学基金(61771233 61271155)~~
关键词 血管内超声 超分辨率重建 生成对抗网络 亚像素卷积层 intravascular ultrasound super- resolution reconstruction generative adversarial network sub-pixel convolutionlayer
  • 相关文献

参考文献6

二级参考文献28

共引文献58

同被引文献51

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部