期刊文献+

基于相对信息观测量的INS/USBL非线性组合导航方法 被引量:3

INS/USBL nonlinear integrated navigation method based on observations of relative information
下载PDF
导出
摘要 针对传统惯性导航系统/超短基线定位系统(inertial navigation system/ultra short base line,INS/USBL)组合导航利用绝对位置做观测信息存在导航精度较低,且噪声异常引起抗干扰能力弱的问题,提出基于相对信息观测量的INS/USBL非线性组合导航方法。以INS解算的应答器相对于INS在基阵坐标系下的入射角、斜距信息与超短基线输出的入射角、斜距信息之差作为观测量建立量测方程。在改进Sage-Husa算法基础上采用容积规则,设计一种适用于非线性系统的自适应容积卡尔曼滤波估计器。仿真结果表明,该方法定位精度较传统方法提升2.4倍,在噪声异常情况下,滤波收敛,组合导航性能稳定。 To solve the problems of low precision and weak capability of resisting the noise disturbance caused by using traditional inertial navigation system/ultra short base line (INS/USBL) integrated navigation system, an INS/USBL nonlinear integrated navigation method based on observations of relative information is proposed. An observation equation is introduced based on difference between two incidence angles and between two slant ranges which are respectively resolved by INS and USBL . Then, an adaptive noise statistics estimator designed for nonlinear systems is derived by applying the cubature rule based on the modified Sage-Husa algorithm. Simulation results show that, the positioning precision of the proposed algorithm is 2.4 times of that of the traditional algorithm. In the circumstance of unusual noise, the filter has better convergence and the system has better stability.
作者 董萍 程建华 刘利强 牟宏杰 DONG Ping;CHENG Jianhua;LIU Liqiang;MOU Hongjie(College of Automation,Harbin Engineering University, Harbin 150001, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第2期402-408,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61374007 61633008 61773132)资助课题
关键词 非线性系统 相对信息观测量 Sage-Husa算法 自适应容积卡尔曼滤波 nonlinear system observation of relative information Sage-Husa algorithm adaptive cubature Kalman filters (ACKF)
  • 相关文献

参考文献5

二级参考文献42

  • 1兰华林,孙大军,张殿伦,李想.单应答器导航深海试验[J].海洋工程,2007,25(2):110-113. 被引量:5
  • 2鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:58
  • 3石章松,刘忠,等.目标跟踪与数据融合理论及方法[M].北京:国防工业出版社,2010.35-40.
  • 4Aidala V J. Kalman filter behavior in bearing-only tracking ap- plication[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 1979, 15(1): 29-39.
  • 5Julier S J, Uhlman J K, Durrant Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, 2000, 45(3) : 477 - 482.
  • 6Julier S J, Uhlman J K. Unscented filtering and nonlinear esti- mation[J]. Proceedings of the IEEE, 2004, 92(3) : 401 - 422.
  • 7Chang L B, Hu B Q, Li A, et al. Transformed unscented Kal- man filter[J]. IEEE Trans. on Automatic Control, 2013, 58 (1): 252-257.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009, 54(6): 1254-1269.
  • 9Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter[J]. Automatic, 2013, 49(2): 410-518.
  • 10Leong P H, Arulampalam S, Larnahewa T A. A Gaussian-sum based cubature Kalman filter for bearings-only tracking[J]. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49(2) : 1161 - 1176.

共引文献63

同被引文献15

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部