摘要
爆炸分离冲击环境是航天器所经历的最严酷的力学环境之一,为了避免一些箭载仪器设备或者结构在飞行中损坏,因此需要进行爆炸分离冲击环境试验。针对高量级爆炸分离冲击试验设计难、影响试验结果因素多的特点,作者提出了基于机械撞击方式的双层板式爆炸分离冲击环境模拟方法,同时该方法也适用于火工品激励方式的爆炸冲击模拟试验。本研究中首先建立双层板式爆炸冲击环境模拟装置的有限元分析模型,采用Latin超立方的试验设计优化方法,确定试验样点,并进行撞击过程的计算模拟,然后对有限元模型中的关键参数进行优化设计,使获得的计算结果和试验结果的偏差最小。最后,用有限元模拟结果对优化的设计进行了验证,结果表明基于优化的计算模拟时间被大大压缩,其可实现冲击环境模拟试验的预测,对关键参数的处理方法可以用于其它类型试验的试验装置设计中,并可以大大提高了整个试验的准确性和效率。
Pyroshock environment is one of the most severe mechanical environments experienced by spacecraft.In order to avoid damages of instruments or structures equipped during the flight,the launch environment testing must be performed to guarantee the electronic units,subsystems,and full-scaled systems have the ability to withstand explosive loads.Taking into account the challenge of designing pyroshock tests,a bi-plate structure pyroshock environment simulation method,which is based on the mechanical impact mode,is proposed in this paper.First,the parameterized model of the bi-plate subject to pyroshock loads is developed using commercial finite element(FE)software OptiStruct.To reduce the computational time during the entire analyses,the optimal Latin hypercube design of experiments(DOE)technique is employed to optimize the distribution of sample points for metamodel building.Then,genetic35 algorithm is applied on the metamodel of responses of interests to find the optimal design.Finally,the optimized designed is verified FE simulations.The results show that the proposed bi-plate mechanical impact method has the capability to simulate the pyroshock acceleration environment with a high level of accuracy,which is demonstrated by a good agreement with experimental results.In the meanwhile,the metamodel assisted optimization technique has remarkably improved the computational efficiency of the design process and also provides useful insights into developing strategies for solving large-scale,high-dimensional optimization problems.
作者
皮本楼
张旭辉
丁沛
王佳南
Dianzi Liu
PI Benlou;ZHANG Xuhui;DIN Pei;WANG Jianan;Dianzi Liu(Beijing Institute of Structure and Environment Engineering,Beijing,100076,China;Xi’an University of Science and Technology,Xi’an,710054,China;Faculty of Science,University of East Anglia,Norwich,UK,NR4 7TJ)
出处
《强度与环境》
2018年第6期34-42,共9页
Structure & Environment Engineering
基金
国家自然科学基金(11502023,11502024)