期刊文献+

融合区域对比与稀疏低秩的显著性检测 被引量:1

Salient Detection Based on Region Contrast and Sparse Low-Rank
下载PDF
导出
摘要 针对传统显著性检测方法在目标高亮和背景抑制等方面存在的问题,文中提出一种融合颜色区域对比与稀疏低秩的方法.采用超像素分割方法对原始图像进行分割,形成若干超像素块;结合图像颜色特征、纹理特征以及空间位置的独特性分别计算区域间的对比度,并对其进行融合得到初始显著图;利用稀疏低秩分解对初始显著图进行背景非显著信息的抑制,得到最终显著图.实验结果表明,文中方法能够均匀的突出显著目标,并有效抑制背景信息;在MSRA数据集上与其他6种方法进行对比实验,具有更好的准确率和召回率. Existing saliency detection methods have the problems of target highlighting and background suppression.To solve these problems,the paper presents a saliency detection method based on region contrast and sparse low rank.The original image is segmented into superpixels.On the combination of the image color feature,texture feature and uniqueness of space location,the contrast between regions is computed,and the initial saliency map is obtained by fusion.The final saliency map is obtained by using sparse low-rank decomposition to suppress the background non salient information of initial saliency maps.The experimental results show that the proposed method can uniformly highlight the significant targets and effectively restrain the background information.Compared with the other 6 methods in the MSRA dataset,the proposed method is of higher accuracy and recall rate.
作者 肖锋 李茹娜 胡秀华 XIAO Feng;LI Runa;HU Xiuhua(School of Computer Science and Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《西安工业大学学报》 CAS 2018年第6期633-639,共7页 Journal of Xi’an Technological University
基金 国家自然科学基金(61572392) 陕西省自然科学基础研究面上项目(2017JC2-08) 陕西省教育厅产业化项目(16JF012) 陕西省教育厅自然专项(18JK0383) 陕西省工业科技攻关项目(2016GY-088) 新型网络与检测控制国家地方联合工程实验室基金(GSYSJ2016006)
关键词 显著性检测 区域对比度 视觉注意 稀疏低秩 超像素 saliency detection region contrast visual attention sparse low-rank superpixels
  • 相关文献

参考文献1

二级参考文献17

  • 1Donoho D L. Compressed sensing[J]. IEEE Transaction on Information Theory ,2006,52(4) : 1289 - 1306.
  • 2Baraniuk R G. Compressive sensing [ J]. 1EEE Signal Pro- cessing Magazine,2007,24(4) : 118 - 120.
  • 3Eldar Y C, et al. Compressed Sensing: Theory and Applicati- olns[M]. New York: Cambridge University Press, 2012.1 - 544.
  • 4Cand~s E J. The restricted isomelry property and its implica- tions for compressed sensing[J]. Comptes Rendus Mathema- tique, 2008,346 (9) : 589 - 592.
  • 5Chen S S, et al. Atomic decomposition by basis pursuit[J]. Society for Industrial and Applied Mathematics Review,2001,43(1):129 - 159.
  • 6Ji S, et al. Bayesian compressive sensing and projection opti- mization[ A ]. Proceedings of the 24th International Confer- ence Machine Learning[ C]. Corvallis, OR - USA, 21XY/. 377 - 384.
  • 7He L, Carin L. Exploiting structure in wavelet-based Bayesian compressive sensing [ J ]. IE.EE Transaction on Signal Processing, 2009,57 (9) : 3488 - 3497.
  • 8Figueiredo M A T, et al. Gradient projection for sparse re- construction: application to compressed sensing and other in- verse problems[ J]. IEEE Journal on Selected Areas in Com- munications, 2027,1 (4) : 586 - 597.
  • 9Pail Y C,et al. Orthogonal matching pursuit: recursive func- tion approximation with applications to wavelet decomposi- tion [ A]. Proceedings of the 27~ Asilomar Conference on Signals, Systems and Computers [ C ]. Los Alamitos, CA, . Comput Soc Press, 1993.40 - 44.
  • 10Donoho D L, et al. Sparse solution of underdetermined lin- ear equations by stagewise orthogonal matching pursuit[ J]. IEEE. Transaction on Information Theory, 2012, 58 (2): 1094- 1121.

共引文献33

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部