期刊文献+

Stacking集成模型在短期电价预测中的应用 被引量:3

Application of Stacking integrated model in short-term electricity price forecasting
下载PDF
导出
摘要 为进一步提高短期电价预测结果的准确性和可靠性,本文提出了一种运用Stacking学习方式去集成不同基础学习器的短期电价预测模型。首先采用J-Fold和交叉验证的方式对数据进行分割和训练,将原始特征进行特征变换,重新构建二级特征;然后再使用构建的新特征去训练Meta学习器,用于样本数据的最终预测。实验结果表明,相比较于单一的回归模型,Stacking集成模型具有更小的误差和良好的稳定性,为短期电价预测提供了新方法。 To further improve the accuracy and reliability of the short-term electricity price forecasting results,this paper proposes a Stacking learning method to integrate different basic learner short-term electricity price forecasting models.First,the data is carried out by J-Fold and cross-validation for segmentation and training.Then,feature transformation is conducted for the original features to reconstruct the secondary features.The new features are used build to train the Meta learner for the final prediction of the sample data.The experimental results show that the Stacking integrated model has smaller error and good stability compared with a single regression model,which provides a new method for short-term electricity price forecasting.
作者 王曙 潘庭龙 WANG Shu;PAN Tinglong(Engineering Research Center of Internet of Things Technology Application Ministry ofEducation,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《中国科技论文》 CAS 北大核心 2018年第20期2373-2377,共5页 China Sciencepaper
基金 国家自然科学基金资助项目(61672266)
关键词 电价预测 集成模型 机器学习 electricity price forecasting integrated model machine learning
  • 相关文献

参考文献8

二级参考文献114

共引文献150

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部