摘要
为了量化风电出力的随机性和波动性对电力系统备用容量的影响,利用条件风险价值方法,在电力市场环境下构建了包含了常规机组的运行成本、排污成本、期望停电成本、旋转备用成本在内的风电电力系统旋转备用的风险-成本模型,在Matlab环境下利用量子差分进化算法对模型进行求解,通过仿真分析了量子差分进化算法的优势、不同风险水平对系统上下旋转备用容量的影响,以及不同置信度下系统总的运行成本和条件风险值,得出了风险水平越高(对风电的态度愈保守),系统的上下旋转备用越小,而系统的上下旋转备用容量的置信度增加,系统总的运行成本和CVa R值则降低的结论。
In order to quantify the impact caused by the fluctuation and randomness of wind power, the method of conditional value at risk (CVaR) is proposed to build the spinning reserve model of the electric power system incorporated wind power which includs the conventional unit operation cost, the pollution cost, expected energy not supplied cost and spinning reserve capacity cost in the environment of electricity market, and the model is solved by quantum-inspired and differential evolution algorithm in Matlab environment, and then the advantages of quantum differential evolution algorithm, the impact of different profit risk levels on spinning reserve capacity and the influence of different degrees of confidence on the system total operation cost and the value of CVaR are analyzed by simulation examples. It is concluded that the higher the risk level (the more conservative attitude towards wind power), the smaller the up-down spinning reserve of the system, and the higher the confidence of the up-down spinning reserve capacity of the system, the lower the total operating cost and CVaR value of the system.
作者
刘怡君
夏晨杰
关惠方
杨永鹏
LIU Yijun;XIA Chenjie;GUAN Huifang;YANG Yongpeng(State Grid Chengdu Power Supply Company,Chengdu 610041,China;Xincheng Power Supply Branch of Tianfu New District Power Supply Company of State Grid Sichuan Power Company,Chengdu 610213,China)
出处
《电力工程技术》
2019年第1期42-48,共7页
Electric Power Engineering Technology
基金
国家自然科学基金资助项目(51477105)
关键词
风电
条件风险价值
旋转备用
量子差分进化算法
wind power
conditional value at risk
spinning reserve
quantum inspired and differential evolution algorithm