期刊文献+

视频图像中的快速人体运动目标跟踪算法研究 被引量:7

Research on tracking algorithm of fast human motion target in video image
下载PDF
导出
摘要 为了有效提升视频图像中人体运动目标跟踪的速度和准确性,提出一种基于改进CamShift算法和Kalman滤波器的快速运动目标跟踪算法。首先采用YCbCr颜色模型对典型CamShift跟踪算法的预处理过程进行改进,有效提高了人体运动目标检测的鲁棒性。然后通过结合Kalman滤波器实现运动目标的位置预测。仿真实验结果显示,相比其他基于CamShift的跟踪算法,提出的算法能够有效抑制噪声和背景的干扰,在目标跟踪的效果和准确性上均有一定的提高。 A fast moving target tracking algorithm based on improved CamShift algorithm and Kalman filter is proposed to improve the tracking speed and accuracy of human moving target in video image effectively.The YCbCr color model is used to improve the preprocessing process of the typical CamShift tracking algorithm,which can improve the robustness of human moving target detection effectively,and the Kalman filter is combined to realize the position prediction of the moving target.The simulation results show that,in comparison with other CamShift-based tracking algorithms,the proposed algorithm can suppress the noise and background interference effectively,and improve the tracking effect and accuracy of target to a certain extent.
作者 李晨 LI Chen(Department of Physical Education,Inner Mongolia University of Technology,Huhhot 010050,China)
出处 《现代电子技术》 北大核心 2019年第3期49-51,共3页 Modern Electronics Technique
关键词 目标跟踪 OPENCV KALMAN CAMSHIFT 人体目标 颜色模型 target tracking OpenCV Kalman CamShift human target color model
  • 相关文献

参考文献3

二级参考文献24

  • 1Wen L, Cai Z, Lei Z, et al. Robust online learned spatio-temporal context model for visual tracking [J]. IEEE Transactions on Image Processing, 2014,23 (2) : 785-796.
  • 2Ning J, Zhang L, Zhang D, etal. Robust mean-shift tracking with corrected background-weighted histo- gram [J]. Computer Vision, IET, 2012,6 ( 1 ) : 62-69.
  • 3Nejhum S M S, Ho J, Yang M. Online visual track- ing with histograms and articulating blocks [J]. Com- puter Vision and Image Understanding, 2010,114 ( 8 ) : 901-914.
  • 4Chia Y S,Kow W Y,Khong W L,etal. Kernel-based object tracking via particle filter and mean shift algo- rithm [C]// Proceedings of 2011 llth International Conference on Hybrid Intelligent Systems (HIS). Melaeea : IEEE, 2011 : 522-527.
  • 5Chu H, Xie Z, Nie X, et al. Particle filter target tracking method optimized by improved mean shift [C] // Proceedings of Information and Automation (ICIA), 2013 IEEE International Conference on. Yin- chuan.. IEEE, 2013 : 991-994.
  • 6Kejia B. Particle filter tracking with Mean Shift and joint probability data association [C] // Proceedings of Image Analysis and Signal Processing (IASP), 2010 International Conference on. Xiamen.. IEEE, 2010: 607-612.
  • 7Shah C, Tan T, Wei Y. Real-time hand tracking u-sing a mean shift embedded particle filter [J]. Pattern Recognition, 2007,40(7) : 1958-1970.
  • 8Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non- Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002,50 ( 2 ) : 174-188.
  • 9Comaniciu D, Ramesh V, Meer P. Kernel-based ob- ject tracking [J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2003,25 (5) : 564-577.
  • 10SPEVI. Surveillance Performance Evaluation Initia- tive [EB/OL]. [2014-03-10]. http: // www. eecs. qmul. ac. uk/-andrea/spevi, html.

共引文献23

同被引文献56

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部