期刊文献+

应用于运动视频目标跟踪的改进粒子滤波模型技术研究 被引量:1

Research on improved particle filtering model technology applied to motion video target tracking
下载PDF
导出
摘要 粒子滤波作为目标跟踪的主流技术,在人体运动视频分析中具有广阔的应用前景。为了进一步提高目标追踪的精度,提出一种基于改进粒子滤波模型的运动视频目标跟踪算法。采用HSV分布模型构建目标观测模型,结合粒子滤波器和退化权值检测运动目标是否出现在目标观测模型中。最后引入遗传算法对粒子滤波算法进行改进,以便消除粒子退化的现象。在体育运动员视频中进行测试验证,实验结果表明,提出的算法能够有效完成运动视频中的人体目标跟踪,与其他算法相比,提出算法的精度和运行效率更高。 As the mainstream technology of target tracking,particle filtering has broad application prospect in human motion video analysis.A motion video target tracking algorithm based on improved particle filtering model is proposed to further improve the accuracy of target tracking.The target observation model is constructed by using HSV distribution model,and then the particle filter and degradation weight are combined to detect whether the moving target appears in the target observation model.The genetic algorithm is introduced to improve the particle filtering algorithm,and eliminate the phenomenon of particle degradation.The test verification was conducted with the sports athlete video.The experimental results show that the proposed algorithm can effectively complete the human target tracking in motion video,and has higher accuracy and operation efficiency than other algorithms.
作者 刘懿 LIU Yi(Chongqing Technology and Business University,Chongqing 400067,China)
机构地区 重庆工商大学
出处 《现代电子技术》 北大核心 2019年第3期65-67,72,共4页 Modern Electronics Technique
关键词 目标跟踪 遗传算法 运动视频 粒子滤波 HSV分布模型 退化权值 target tracking genetic algorithm motion video particle filtering HSV distribution model degeneration weight
  • 相关文献

参考文献3

二级参考文献26

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1246
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 4Doucet A, Godsill S. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 10(1): 197-208.
  • 5Katja N, Esther K, Luc V G. Object tracking with and adaptive colorbased particle filter[C] // Proceedings of the 24th DAGM Symposium on Pattern Recognition. Zurich, Switzerland:[s. n. ], 2002:353-360.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization[C]// Proc of the IEEE Intl Conf on Neural Networks. Piscataway. NJ: IEEE, 1995,1V: 1942-1948.
  • 7Krohling R A. Gaussian swarm: A novel particle swarm optimization algorithm[C]//Cybernetics and Intelligent Systems, 2004 IEEEConferenceon. [S.1.]:IEEE, 2004, 1: 372-376.
  • 8FCBHighDef. Soccer game video[EB/OL], http://v, youku, com/v show/id XNDk4OTQ1OTEy. html, 2013.
  • 9International Business Machine Ltd. Performance evaluation of surveillance systems[EB/OL], http://www, research, ibm. com/peoplevision/performanceevaluation, html, 2001.
  • 10Sebastien PARIS. Particle filter color tracker[EB/OL], http://www, mathworks, cn/matlabcentral/fileexehange/17960, 2007.

共引文献6

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部