摘要
粒子滤波作为目标跟踪的主流技术,在人体运动视频分析中具有广阔的应用前景。为了进一步提高目标追踪的精度,提出一种基于改进粒子滤波模型的运动视频目标跟踪算法。采用HSV分布模型构建目标观测模型,结合粒子滤波器和退化权值检测运动目标是否出现在目标观测模型中。最后引入遗传算法对粒子滤波算法进行改进,以便消除粒子退化的现象。在体育运动员视频中进行测试验证,实验结果表明,提出的算法能够有效完成运动视频中的人体目标跟踪,与其他算法相比,提出算法的精度和运行效率更高。
As the mainstream technology of target tracking,particle filtering has broad application prospect in human motion video analysis.A motion video target tracking algorithm based on improved particle filtering model is proposed to further improve the accuracy of target tracking.The target observation model is constructed by using HSV distribution model,and then the particle filter and degradation weight are combined to detect whether the moving target appears in the target observation model.The genetic algorithm is introduced to improve the particle filtering algorithm,and eliminate the phenomenon of particle degradation.The test verification was conducted with the sports athlete video.The experimental results show that the proposed algorithm can effectively complete the human target tracking in motion video,and has higher accuracy and operation efficiency than other algorithms.
作者
刘懿
LIU Yi(Chongqing Technology and Business University,Chongqing 400067,China)
出处
《现代电子技术》
北大核心
2019年第3期65-67,72,共4页
Modern Electronics Technique
关键词
目标跟踪
遗传算法
运动视频
粒子滤波
HSV分布模型
退化权值
target tracking
genetic algorithm
motion video
particle filtering
HSV distribution model
degeneration weight