摘要
针对外部扰动以及建模误差对机械臂轨迹跟踪精度影响的问题,利用递归神经网络设计了分散化的神经鲁棒控制器,采用机械臂各个关节状态方程的子系统表示整个系统。使用滤错训练算法估计神经网络未知权重系数,同时引入鲁棒项抑制关节神经控制器之间的相互影响和建模误差,并利用Lyapunov函数进行稳定性证明。与没有鲁棒项的仿真结果对比表明,设计的分散化神经鲁棒控制器具有更精确的轨迹跟踪精度,误差的收敛性更好,稳定性更高。
In order to eliminate the influence of external disturbance and modeling error on manipulator′s trajectory tracking accuracy,the recurrent neural network is used to design the decentralized neural robust controller,and the subsystem of each joint state equation of the manipulator is used to represent the whole system.The error.filtered training algorithm is adopted to estimate the unknown weight coefficients of the neural network.The robust item is introduced to suppress the mutual influence and modeling error between the joint neural controllers.The stability of the neural network is proved by Lyapunov function.In comparison with the simulation results without robust item,the decentralized neural robust controller has more precise trajectory tracking accuracy,better error convergence,and higher stability.
作者
胡海兵
杨建德
张结文
金施群
HU Haibing;YANG Jiande;ZHANG Jiewen;JIN Shiqun(Academy of Photoelectric Technology,Hefei University of Technology,Hefei 230009,China)
出处
《现代电子技术》
北大核心
2019年第3期111-115,共5页
Modern Electronics Technique
基金
国家重大科学仪器设备开发专项(2013YQ220749)~~
关键词
神经鲁棒控制器
轨迹跟踪
递归神经网络
滤错训练算法
鲁棒项
机械臂
neural robust controller
trajectory tracking
recurrent neural network
error.filtered training algorithm
robust item
mechanical arm