期刊文献+

A mathematical model of synaptotagmin 7 revealing functional importance of short-term synaptic plasticity 被引量:1

A mathematical model of synaptotagmin 7 revealing functional importance of short-term synaptic plasticity
下载PDF
导出
摘要 Synaptotagmin 7(Syt7), a presynaptic calcium sensor, has a significant role in the facilitation in shortterm synaptic plasticity: Syt7 knock out mice show a significant reduction in the facilitation. The functional importance of short-term synaptic plasticity such as facilitation is not well understood. In this study, we attempt to investigate the potential functional relationship between the short-term synaptic plasticity and postsynaptic response by developing a mathematical model that captures the responses of both wild-type and Syt7 knock-out mice. We then studied the model behaviours of wild-type and Syt7 knock-out mice in response to multiple input action potentials. These behaviors could establish functional importance of short-term plasticity in regulating the postsynaptic response and related synaptic properties. In agreement with previous modeling studies, we show that release sites are governed by non-uniform release probabilities of neurotransmitters. The structure of non-uniform release of neurotransmitters makes shortterm synaptic plasticity to act as a high-pass filter. We also propose that Syt7 may be a modulator for the long-term changes of postsynaptic response that helps to train the target frequency of the filter. We have developed a mathematical model of short-term plasticity which explains the experimental data. Synaptotagmin 7(Syt7), a presynaptic calcium sensor, has a significant role in the facilitation in shortterm synaptic plasticity: Syt7 knock out mice show a significant reduction in the facilitation. The functional importance of short-term synaptic plasticity such as facilitation is not well understood. In this study, we attempt to investigate the potential functional relationship between the short-term synaptic plasticity and postsynaptic response by developing a mathematical model that captures the responses of both wild-type and Syt7 knock-out mice. We then studied the model behaviours of wild-type and Syt7 knock-out mice in response to multiple input action potentials. These behaviors could establish functional importance of short-term plasticity in regulating the postsynaptic response and related synaptic properties. In agreement with previous modeling studies, we show that release sites are governed by non-uniform release probabilities of neurotransmitters. The structure of non-uniform release of neurotransmitters makes shortterm synaptic plasticity to act as a high-pass filter. We also propose that Syt7 may be a modulator for the long-term changes of postsynaptic response that helps to train the target frequency of the filter. We have developed a mathematical model of short-term plasticity which explains the experimental data.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期621-631,共11页 中国神经再生研究(英文版)
基金 supported by a grant from Lincoln University,New Zealand
关键词 SYNAPSE SHORT-TERM plasticity SHORT-TERM FACILITATION and depression MATHEMATICAL model low-frequency STIMULATION high-frequency STIMULATION synapse short-term plasticity short-term facilitation and depression mathematical model low-frequency stimulation high-frequency stimulation
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部