摘要
符号对码是随着信息技术发展而产生的一种新型纠错码,它能对符号对读信道中符号对信息进行保护,符号对距离是衡量符号对码纠错能力的一个重要参数。文章利用Z_4上长为2~s的负循环码的结构和汉明距离,确立了Z_4上长为2~s的所有负循环码的符号对距离,给出了Z_4上长为2~s的负循环码的符号对距离分布。
Symbol-pair codes are a new kind of error-correcting codes with the development of information technology, which can protect symbol-pair information over symbol-pair read channels. For any symbol-pair code, the symbol-pair distance is an important parameter for measuring its pair-error-correcting capability. In this paper, the symbol-pair distance of negacyclic codes over Z4 of length 2^s is studied. By using the structure and Hamming distance of such negacyclic codes, the symbol-pair distance of negacyclic codes over Z4 of length 2^s is completely determined, and their symbol-pair distance distribution is given.
作者
冯杰明
开晓山
FENG Jieming;KAI Xiaoshan(School of Mathematics, Hefei University of Technology, Hefei 230009, China)
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2019年第1期136-140,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(61572168
61370089)
关键词
符号对码
符号对距离
汉明距离
负循环码
symbol-pair codes
symbol-pair distance
Hamming distance
negacyclic codes