期刊文献+

Z_4上长为2~s的负循环码的符号对距离 被引量:1

Symbol-pair distance of negacyclic codes over Z_4 of length 2~s
下载PDF
导出
摘要 符号对码是随着信息技术发展而产生的一种新型纠错码,它能对符号对读信道中符号对信息进行保护,符号对距离是衡量符号对码纠错能力的一个重要参数。文章利用Z_4上长为2~s的负循环码的结构和汉明距离,确立了Z_4上长为2~s的所有负循环码的符号对距离,给出了Z_4上长为2~s的负循环码的符号对距离分布。 Symbol-pair codes are a new kind of error-correcting codes with the development of information technology, which can protect symbol-pair information over symbol-pair read channels. For any symbol-pair code, the symbol-pair distance is an important parameter for measuring its pair-error-correcting capability. In this paper, the symbol-pair distance of negacyclic codes over Z4 of length 2^s is studied. By using the structure and Hamming distance of such negacyclic codes, the symbol-pair distance of negacyclic codes over Z4 of length 2^s is completely determined, and their symbol-pair distance distribution is given.
作者 冯杰明 开晓山 FENG Jieming;KAI Xiaoshan(School of Mathematics, Hefei University of Technology, Hefei 230009, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2019年第1期136-140,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61572168 61370089)
关键词 符号对码 符号对距离 汉明距离 负循环码 symbol-pair codes symbol-pair distance Hamming distance negacyclic codes
  • 相关文献

参考文献3

二级参考文献19

  • 1钱建发,朱士信.F_2+uF_2+…+u^kF_2环上的循环码[J].通信学报,2006,27(9):86-88. 被引量:6
  • 2Bachoc C. Applications of coding theory to the construction of modular Lattices[J]. Combinatorial Theory, Series A, 1997, 78(1): 92-119.
  • 3Bonnecaze A and Udaya P. Cyclic codes and self-dual codes over F2 + uF2 [J], IEEE Transactions on Information Theory, 1999, 45(4): 1250-1255.
  • 4Dougherty S T, Gaborit P, Harada M, and Sole.P. TypeII codes over F2 + uF: [J]. IEEE Transactions on Information Theory, 1999, 45(1): 32-45.
  • 5Qian Jian-fa, Zhang Li-na, and Zhu Shi-xin. (1 + u)- constacyclic and cyclic codes over F2 + uF2 [J]. Applied Mathematics Letters, 2006, 19(8): 820-823.
  • 6Udaya P and Siddiqi M U. Optimal large linear complexity frequency hopping patterns derived from polynomial residue rings [J]. IEEE Transactions on Information Theory, 1998,44(4): 1492-1503.
  • 7Qian J F and Zhu S X. Cyclic codes over F + uF +… + u^k -Fp [J]. IEICE Transactions on Fundamentals, 2005, E88-A(3): 795-797.
  • 8Ozen M and Slap I. Linear codes over Fq[u]/(u^r> with respect to the Rosenbloom-tasfasm an metric[J]. Designs, Codes and Cryptology, 2006, 38(1): 17-29.
  • 9Zhu Shi-xin and Kai Xiao-shan. The Hamming distances of negacyclic codes of length 2^a over GR(2^a, m) [J]. Journal of System Science and Complexity, 2008, 21(1): 60-66.
  • 10Dinh H Q. Complete distances of all negacyclic codes of Length 2^a over Z2^a [J]. IEEE Transactions on Information Theory, 2007, 53(1): 147-161.

共引文献13

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部