期刊文献+

基于压缩感知的双麦克风混响多声源定位算法 被引量:4

Reverberation multi-source localization algorithm based on compressed sensing with dual microphones
下载PDF
导出
摘要 针对混响条件下现有声源定位技术中麦克风数量必须大于声源数量的现状,提出了一种基于压缩感知的双麦克风混响多声源(至少3个声源)定位算法。将多声源定位问题看作是块稀疏信号的重构问题,在频域将全房间冲激响应归一化来构造压缩观测矩阵,重构的块稀疏信号中非零块的位置即对应了空间中实际声源的位置。仿真实验表明,与基于子带可控响应功率(SRP-sub)的多声源定位方法相比,在双麦克风混响条件下定位多声源,基于压缩感知的多声源定位算法的定位性能更高,在混响时间为0.6 s时,仅采用40个频点值,定位3个声源的成功率可以达到80%。 In traditional multi-source localization field, it is necessary to guarantee that the number of microphone is more than the number of source. To overcome this constraint, a dual-microphone multi-source localization algorithm based on CS was proposed, where the number of sound source localized successfully was more than 3. The multi-source localization was regarded as the block sparse signal reconstruction in this algorithm, and the full room impulse responses normalized were exploited to construct the compressed observation matrix in frequency domain. In reconstructed block sparse signal, the positions of non-zero blocks were corresponded to the positions of sound sources in space. The simulation shows that compared with the SRP-sub algorithm, in reverberation time 0.6s with dual-microphone, the proposed multi-source localization algorithm based on compressed sensing has higher capability which can reach 80% success rate by using 40 frequency points to localize 3 sound sources.
作者 张奕 李娟 张敏 ZHANG Yi;LI Juan;ZHANG Min(College of Information Engineering, Dalian University, Dalian 116622, China)
出处 《通信学报》 EI CSCD 北大核心 2019年第1期102-109,共8页 Journal on Communications
基金 国家自然科学基金资助项目(No.61201420)~~
关键词 压缩感知 混响 麦克风阵列 块稀疏 多声源定位 compressed sensing reverberation microphones array block sparse multi-source localization
  • 相关文献

参考文献6

二级参考文献127

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献829

同被引文献36

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部