期刊文献+

基于隐马尔可夫随机场的细胞分割方法

Cell segmentation method based on hidden Markov random field
下载PDF
导出
摘要 为了提高细胞聚合、粘连区域的分割准确性,本文提出一种基于空间聚类和隐马尔可夫随机场的两级分割算法。以像素点颜色特征为依据,在Lab色彩空间中采用k-means++聚类方法得到初始化标签集;通过HMRF构建细胞图像的空间表达模型,充分利用空间约束关系,减少孤立点影响,平滑分割区域;采用期望最大值算法优化模型参数,利用标记场和观测场的相互作用,通过迭代算法不断调整标签集合,迭代直至收敛得到全局最优值。对来自于骨髓涂片的61幅细胞图像中的780个6类细胞的实验表明,本文算法提高了分割的准确率(不小于95%),便于进一步提取细胞病理特征,实现检测识别。 A two-level segmentation algorithm based on spatial clustering and hidden Markov random field(HMRF)is proposed to improve the segmentation accuracy of cell aggregation and adhesion region.First,based on color feature of pixels in the Lab color space,k-means++clustering method is used to obtain an initialization tag set.Second,the spatial expression model of the cell image is constructed by HMRF,which fully employs the spatial constraint relation to reduce the influence of isolated points and smooth the segmentation area.Finally,the model parameters are optimized by using the expectation maximization algorithm.Through the interaction between the marker and observation fields,the label set is adjusted by the iterative algorithm.Experimental results of six kinds of 780 cells from bone marrow smears of 61 cell types show that the proposed algorithm improves the accuracy of segmentation by≥95%.Furthermore,the algorithm is convenient for further extraction,detection,and recognition of cell pathology characteristics.
作者 苏洁 刘帅 SU Jie;LIU Shuai(School of Information Science and Engineering,University of Ji′nan,Ji′nan 250022,China;School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第2期400-405,共6页 Journal of Harbin Engineering University
基金 哈尔滨市科技创新人才项目(2016RAQXJ163)
关键词 图像分割 K均值聚类 隐马尔可夫随机场 期望最大值算法 最大后验概率 image segmentation k-means clustering hidden Markov random field expectation maximization maximum a posteriori
  • 相关文献

参考文献6

二级参考文献115

  • 1汪西莉,刘芳,焦李成.基于不完全分层MRF的非监督图象分割[J].电子学报,2004,32(7):1086-1089. 被引量:3
  • 2阳凡林,独知行,李家彪,吴自银,初凤友.基于MRF场的侧扫声呐图像分割方法[J].海洋学报,2006,28(4):43-48. 被引量:12
  • 3赵凤,范九伦.二维熵取小法和模糊熵相结合的图像分割方法[J].计算机工程与设计,2007,28(12):2883-2885. 被引量:2
  • 4郭琦,孔斌,郑飞.图像分割质量评价的综述[c]∥中国仪器仪表学会第九届青年学术会议论文集,北京:[S.n.],2007:613-618.
  • 5Van Aarle W, Batenbur K J, Sijbers J. Oprimal Threshold Selection for Segmentation of Dense Homogeneous Objects in Tomographic Reconstructions. IEEE Trans on Medical Imaging, 2011, 30 (4) : 980 -989.
  • 6Mishra A K, Aloimonos Y, Cheong L F, et al. Active Visual Seg- memation. IEEE Trans on Pattern Analysis and Machine lntelli-gence, 2012, 34(4) : 639-653.
  • 7Yuksel M E, Borlu M. Accurate Segmentation of Dermoscopic Ima- ges by Image Thresholding Based on Type-2 Fuzzy Logic. IEEE Trans on Fuzzy Systems, 2009, 17(4) : 976-982.
  • 8Feng W, Jia J, Liu Z Q. Self-Validated Labeling of Markov Random Fields for Image Segmentation. IEEE Trans on Pattern Analysis and Machine intelligence, 2010, 32(10) : 1871-1887.
  • 9Chen Yufei, Wang Zhicheng, Zhao Weidong, et al. Liver Segmen- tation from CT Images Based on Region Growing Method//Proc of the 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing, China, 2009:1-4.
  • 10de Santis A, Lacoviello D. Discrete Image Modeling for Piecewise Constant Segmentation by Artificial Neural Networks. IET Image Processing, 2008, 2( 1 ) : 37-47.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部