期刊文献+

控制方向未知的无人帆船自适应动态面航向控制 被引量:5

Adaptive dynamic surface course control for an unmanned sailboat with unknown control direction
下载PDF
导出
摘要 针对四自由度无人帆船存在模型不确定、控制方向和外部环境扰动均未知的情况,本文提出一种神经网络自适应动态面航向控制方法。该方法采用RBF神经网络逼近无人帆船模型不确定部分,利用Nussbaum函数处理系统的未知控制增益函数,并设计σ-修正泄露项的参数自适应律对神经网络逼近误差与外界环境扰动总和的界进行估计,同时引入动态面方法,消除反演法中的"计算膨胀"问题,降低控制器的复杂性。Lyapunov函数稳定性分析证明所设计控制器能够保证航向保持闭环系统内所有信号的一致最终有界性,并通过一艘12 m型无人帆船模型进行仿真验证。结果表明:无人帆船航向保持响应速度快,所设计的控制器能有效地处理模型不确定项和风浪等外界扰动,具有较强的鲁棒性。 A neural network-based adaptive dynamic surface course control method is proposed for cases of 4 degrees of freedom(DOF)unmanned sailboat model uncertainty,whereby both the control direction and the external environmental disturbances are unknown.In this strategy,the neural network was used to approximate the model′s uncertainty.The problem of unknown control gain was properly solved by using the Nussbaum gain function.The adaptive laws based on the leakage term,σ-modification was used to estimate the bounds of neural network errors and unknown external environmental disturbances.Additionally,dynamic surface control technique was introduced to eliminate the“computational expansion”problem of the backstepping method.The stability analysis of the Lyapunov function proved that all signals of the resulting closed-loop system can be guaranteed with the uniformly ultimate boundedness of the proposed controller.Simulation results based on a 12 m unmanned sailboat model showed that the unmanned sailboat course-keeping response speed was fast,and the design controller had strong robustness against the system model′s uncertainty,wind,flow,and other external disturbances.
作者 沈智鹏 邹天宇 SHEN Zhipeng;ZOU Tianyu(College of Marine Electrical Engineering,Dalian Maritime University,Dalian 116026,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2019年第1期94-101,共8页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(51579024) 辽宁省自然科学基金项目(201602072) 中央高校基本科研业务费项目(3132016311)
关键词 无人帆船航向控制 控制方向未知 自适应动态面控制 神经网络 NUSSBAUM函数 反演法 Lyapunov函数 外界扰动 unmanned sailboat course control unknown control direction adaptive dynamic surface control(ADSC) neural network Nussbaum gain function backstepping Lyapunov function external disturbances
  • 相关文献

参考文献8

二级参考文献71

  • 1Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China).A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems[J].Journal of Systems Engineering and Electronics,2000,11(1):61-66. 被引量:2
  • 2缪国平.帆船运动的力学原理[J].力学与实践,1994,16(1):9-18. 被引量:20
  • 3卜仁祥,刘正江,李铁山.迭代滑模增量反馈及在船舶航向控制中的应用[J].哈尔滨工程大学学报,2007,28(3):268-272. 被引量:24
  • 4WANG J, RAD A B, CHAN P T. Indirect adaptive fuzzy sliding mode control-part Ⅰ: fuzzy switching[J]. Fuzzy Sets and Systems, 2001, 122(1): 21 - 30.
  • 5HO H F, WONG Y K, RAD A B. Adaptive fuzzy sliding mode control design: Lyapunov approach[C] //Proceedings of the 5th Asian Control Conference. Melbourne, Australia: IEEE, 2004:1502 - 1507.
  • 6WANG T, TONG S C. Output feedback control of nonlinear systems using adaptive fuzzy sliding mode controller[C] //Proceedings of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou: IEEE, 2005:1345 - 1350.
  • 7WANG T, TONG S C. Adaptive fuzzy output feedback control for SISO nonlinear systems[C] //IEEE Proceedings of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai: IEEE, 2004:833 - 838.
  • 8HO H F, WONG Y K, RAD A B. Adaptive fuzzy sliding mode control for SISO nonlinear systems[C] //The 12th IEEE International Conference on Fuzzy Systems. Saint Louis, Missouri, USA: IEEE, 2003: 1344- 1349.
  • 9YING H. General SISO Takagi-Sugeno fuzzy system with linear rule consequent are approximators[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(4): 582 - 587.
  • 10MAO J Q, ZHANG J G, YUE Y F, et al. Adaptive tree-structured -based fuzzy inference systems[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(1): 1 - 12.

共引文献69

同被引文献54

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部