期刊文献+

自然场景下基于四级级联全卷积神经网络的人脸检测算法 被引量:3

Face Detection Based on Full Convolution Neural Network of Four-level Cascading in Natural Scene
下载PDF
导出
摘要 针对于自然场景下人脸检测存在的姿态复杂、遮挡和光照等问题,提出一种基于4级级联全卷积神经网络的人脸检测算法。构建4级级联网络,采用级联分级训练代替端到端训练,以避免只共享1个网络权值的局限,进而获得有区分性功能的深度网络,提高检测精度;每级深度网络结构均采用全卷积结构,可以接受任意尺寸图像的输入,提高检测效率;另外在训练过程采用自举法Bootstrap进行网络模型的优化训练,提高训练样本利用率;利用最终训练好的深度卷积网络模型实现人脸检测。人脸检测实验结果标明,本算法在自然场景下,对多姿态、遮挡、单图多种人脸类型等均具有良好的鲁棒性,同时在现有平台上每张图片的检测速度达到96ms,在国际权威的人脸检测公开测试集FDDB上的"真正率"达到82.98%。 Aiming at the problem of various facial gestures,occlusions and illumination in human face detection in natural scene,a face detection algorithm was proposed based on full convolution neural network of four-level cascading.Firstly,a four-level cascade network was constructed.A cascade training was used instead of end-to-end training to avoid the limitation of sharing only one network weight.A deep network with differentiated functions can be obtained,to improve the detection accuracy.Secondly,each level of depth network architecture using full convolution network structure can accept any size of image input to improve the detection performance and efficiency.During the training process,the bootstrap method was used to optimize the training of the network model,to improve the training sample utilization rate.Finally,the trained deep convolution network model was used to achieve face detection.The experimental results show that the face detection algorithm has good robustness in the natural scene,such as multi-gesture,occlusion,single figure multiple faces.On the existing platform,the speed of each picture detection reached 96 ms.The accuracy on the international authoritative face detection data set(FDDB)benchmark is 82.98%.
作者 石学超 周亚同 韩卫雪 SHI Xuechao;ZHOU Yatong;HAN Weixue(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处 《铁道学报》 EI CAS CSCD 北大核心 2019年第1期80-86,共7页 Journal of the China Railway Society
基金 中国博士后科学基金(2014M561053) 河北省自然科学基金(F2013202254) 2015年度教育部人文社会科学研究项目(15YJA630108)
关键词 人脸检测 4级级联网络 全卷积网络 自举训练 深度学习 face detection four-level cascade network full convolution network bootstrap training deep learning
  • 相关文献

参考文献1

二级参考文献21

  • 1Zhang C, Zhang ZY. A survey of recent advances in face detection. Technical Report, MSR-TR-2010-66, Washington: Microsoft Research, 2010.
  • 2Sirohey SA. Human face segmentation and identification. Technical Report, CS-TR-3176, Maryland: University of Maryland, 1993.
  • 3Augusteijn MF, Skujca TL. Identification of human faces through texture-based feature recognition and neural network technology. In: Proc. of the IEEE Conf. on Neural Networks. IEEE, 1993. 392-398. [doi: 10.1I09/1CNN.I993.298589].
  • 4Yang G, Huang TS. Human face detection in complex background. Pattern Recognition, 1994,27(l):53-63. [doi: 10.1016/0031 -3203(94)90017-5].
  • 5Heiseleu B, Serret T, Pontils M, Poggiot T. Component-Based face detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society Press, 2001. 657-662. [doi: 10.1109/CVPR.2001.990537].
  • 6Lanitis A, Taylor CJ, Cootes TF. An automatic face identification system using flexible appearance models. Image and Vision Computing, 1995,13(5):393-401. [doi: 10.1016/0262-8856(95)99726-11].
  • 7Rowley H, Baluja S, Kanade T. Neural network-based face detection. IEEE Trans, on Pattern Analysis and Machine Intelligence, 1998,20(l):23-38. [doi: 10.1109/34.655647].
  • 8Osuna E, Freund R, Girosi, F. Training support vector machines: An application to face detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society Press, 1997. 130-136. [doi: 10.1109/CVPR.1997.609310].
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society Press, 2001.1-51 1-1-518. [doi: 10.1109/CVPR.2001.990517].
  • 10Bourdev L, Brandt J. Robust object detection via soft cascade. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society Press, 2005. 236-243. [doi: 10.1109/CVPR.2005.310].

共引文献9

同被引文献15

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部