期刊文献+

完全保持不定Jordan 1-?-零积的映射 被引量:1

Maps Completely Preserving Indefinite Jordan 1-?-zero Product
原文传递
导出
摘要 通过刻画无限维完备的不定内积空间上双边保幂等元正交性的双射,得到了?-标准算子代数之间完全保持不定Jordan 1-?-零积满射的具体结构形式,进而证明了这样的映射是同构或者共轭同构的非零常数倍. By characterizing the bijections pre serving orthogonality of idempotents in both directions on the infinite dimensional complete indefinite inner product spaces,we obtain the concrete form of surjective maps completely preserving indefinite Jordan 1-*-zero product between*-standard operator algebras.Our results show that such maps are nonzero scalar multiple of isomorphisms or conjugate isomorphisms.
作者 黄丽 张瑜 HUANG Li;ZHANG Yu(Department of Mathematics,School of Applied Science,Taiyuan University of Science and Technology,Taiyuan,Shanxi,030024,P.R-China)
出处 《数学进展》 CSCD 北大核心 2019年第1期81-88,共8页 Advances in Mathematics(China)
基金 国家自然科学基金青年基金项目(No.11501401)
关键词 *-标准算子代数 完全保持 不定内积空间 不定Jordan1-*-零积 *-standard operator algebras complete preserving problem indefinite inner product spaces indefinite Jordan 1-*-zero product
  • 相关文献

参考文献1

二级参考文献19

  • 1Bai Z F, Hou J C, Xu Z B. Maps preserving numerical radius distance on Calgebras[J]. Studia Math, 2004 (162) : 97-104.
  • 2Bai Z F, Hou J C. Numerical radius distance preserving maps on B(H)[J]. Proc Amer Math Soc,2004,132:1454-1461.
  • 3Cui J L, Hou J C. Non-linear numerical radius isometries on atomic nest algebras and diagonal algebras[J]. J Functional Analysis,2004(206) :414-448.
  • 4Petek T, Semrl P. Adjacency preserving maps on matrice and operators[J]. Proc Roy Soe Edinb, 2002,132A:661-684.
  • 5Semrl P. Hugs fumdamental theorems of the geometry of matrices and related results[J]. Linear Alge Appl, 2003(361) :161-179.
  • 6Wan Z X. Geometry of matrices[M]. World Scientific, 1996.
  • 7Effros E G,Ruan Z J. Operator Spaces[M]. Oxford: Clarendon Press, Oxford, 2000.
  • 8Paulsen V. Completely Bounded Maps and Operator Algebras[M]. Cambridge:Cambridge University Press, 2002.
  • 9Pisier G. An introduction to operator space theory[M]. London Math Soc. Lecture Notes, Cambridge: Cambridge University Press, 2003.
  • 10Ruan Z J. Subspaces of C"algebras[J]. J Funct Anal, 1988, 76: 217-230.

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部