期刊文献+

A regional suspended load yield estimation model for ungauged watersheds

A regional suspended load yield estimation model for ungauged watersheds
下载PDF
导出
摘要 Developing regional models using physiographic, climatic, and hydrologic variables is an approach to estimating suspended load yield(SLY)in ungauged watersheds. However, using all the variables might reduce the applicability of these models. Therefore, data reduction techniques(DRTs), e.g., principal component analysis(PCA), Gamma test(GT), and stepwise regression(SR), have been used to select the most effective variables. The artificial neural network(ANN) and multiple linear regression(MLR) are also common tools for SLY modeling. We conducted this study(1) to obtain the most effective variables influencing SLY through DRTs including PCA, GT, and SR, and then, to use them as input data for ANN and MLR; and(2) to provide the best SLY models. Accordingly, we used 14 physiographic, climatic, and hydrologic parameters from 42 watersheds in the Hyrcanian forest region(in northern Iran). The most effective variables as determined through DRTs as well as the original data sets were used as the input data for ANN and MLR in order to provide an SLY model. The results indicated that the SLY models provided by ANN performed much better than the MLR models, and the GT-ANN model was the best. The determination of coefficient,relative error, root mean square error, and bias were 99.9%, 26%, 323 t/year, and 6 t/year in the calibration period, and 70%, 43%, 456 t/year, and 407 t/year in the validation period, respectively. Overall, selecting the main factors that influence SLY and using artificial intelligence tools can be useful for water resources managers to quickly determine the behavior of SLY in ungauged watersheds. Developing regional models using physiographic, climatic, and hydrologic variables is an approach to estimating suspended load yield(SLY)in ungauged watersheds. However, using all the variables might reduce the applicability of these models. Therefore, data reduction techniques(DRTs), e.g., principal component analysis(PCA), Gamma test(GT), and stepwise regression(SR), have been used to select the most effective variables. The artificial neural network(ANN) and multiple linear regression(MLR) are also common tools for SLY modeling. We conducted this study(1) to obtain the most effective variables influencing SLY through DRTs including PCA, GT, and SR, and then, to use them as input data for ANN and MLR; and(2) to provide the best SLY models. Accordingly, we used 14 physiographic, climatic, and hydrologic parameters from 42 watersheds in the Hyrcanian forest region(in northern Iran). The most effective variables as determined through DRTs as well as the original data sets were used as the input data for ANN and MLR in order to provide an SLY model. The results indicated that the SLY models provided by ANN performed much better than the MLR models, and the GT-ANN model was the best. The determination of coefficient,relative error, root mean square error, and bias were 99.9%, 26%, 323 t/year, and 6 t/year in the calibration period, and 70%, 43%, 456 t/year, and 407 t/year in the validation period, respectively. Overall, selecting the main factors that influence SLY and using artificial intelligence tools can be useful for water resources managers to quickly determine the behavior of SLY in ungauged watersheds.
出处 《Water Science and Engineering》 EI CAS CSCD 2018年第4期328-337,共10页 水科学与水工程(英文版)
基金 supported by the Department of Environmental Science,Urmia Lake Research Institute,Urmia University
关键词 Data reduction techniques Forest watershed Sediment yield Regional models Watershed sediment modeling Data reduction techniques Forest watershed Sediment yield Regional models Watershed sediment modeling
  • 相关文献

参考文献2

二级参考文献2

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部