期刊文献+

支撑结构对定日镜绕流风场特性的影响分析 被引量:8

Influence of support structure for heliostat wind field distribution characteristics
下载PDF
导出
摘要 为了研究塔式太阳能定日镜绕流风场的各项特性,文章采用计算流体动力学方法对定日镜绕流风场的分布情况进行数值模拟,并通过模拟结果分析了定日镜绕流风场的分布特征及其产生的原因。分析结果表明:来流冲击定日镜后,滞点位置以下的部分流体经定日镜和地面之间的窄隙流出,形成狭管效应并在定日镜背后近地面处产生流动加速区;绕流至定日镜背面的流体在定日镜面板与支撑立柱之间产生二次钝体绕流,在定日镜和立柱之间形成分布情况比较复杂的风场;来流在定日镜背后形成的上、下两个方向相反的涡结构,这是沿来流方向从定日镜背面至远端近地面的大范围高风速区域产生的主要原因。 In order to study the influence of support structure for heliostat wind field distribution characteristics,the wind field around a heliostat was simulated by Computational Dynamics Fluid(CFD).The CFD results were validated by the wind-tunnel experimental results.The wind filed characteristics around the heliostat and causes were discussed.The results indicate that,after impacting the heliostat,the flow pass through the narrow gap between the ground and the heliostat,which brings a velocity acceleration zone behind the heliostat on account of the tube effect.A secondary bluff body flow is generated between the heliostat and the support column,which causes the complex wind distribution on the heliostat.The two upper and lower vortexes behind the heliostat in opposite direction are the main cause of the large range of high wind speed values region extending from the half-height position of the heliostat to the far-end near the ground.
作者 尹旭 吉柏锋 柳广义 瞿伟廉 张旭 Yin Xu;Ji Baifeng;Liu Guangyi;Qu Weilian;Zhang Xu(Hubei Key Laboratory of Roadway Bridge&Structure Engineering,Wuhan University of Technology,Wuhan 430070,China;Beijing Gold wind Science&Creation Wind power Equipment Co.,Ltd.,Beijing 100176,China)
出处 《可再生能源》 CAS 北大核心 2019年第1期40-45,共6页 Renewable Energy Resources
基金 国家自然科学基金(51308430)
关键词 定日镜 风压系数 数值模拟 计算流体动力学 风场特性 heliostat pressure coefficient numerical simulation computational dynamics fluid wind field characteristics
  • 相关文献

参考文献5

二级参考文献43

  • 1赵金镯,宋伟民.大气超细颗粒物的分布特征及其对健康的影响[J].环境与职业医学,2007,24(1):76-79. 被引量:42
  • 2Murakami S. Overview of turbulence models applied in CWE - 1997 [ J], Journal of Wind Engineering and Industrial Aerodynamics 1998 ;74 - 76:1 - 24.
  • 3MurakamiS. Current status and future trends in computational wind engineering [ J~. J Wind Eng Indus Aerodyn, 1997,67&68:3 -34.
  • 4MurakamiS, MochidaA. 3 -Dnumerical simulation of airflow around a cubic model by means of the k -e model [J]. J Wind Eng Indus Aerodyn, 1988,31 (2) :283 -303.
  • 5Launder BE, Kato M. Modeling flow- induced oscillations in turbulent flow around a square cylinder[ c]. ASME Fluid Eng. Conf. 1993.
  • 6Murakami S, Mochida A, Kondo K, Ishida Y, Tsuchiya M. Developmentof new k e model for flow and pressure fields around bluff body, CWE96,Colorado, USA, 1996 [ J]. Journal of Wind Engineering and Industrial Aerodynamics 1998 ;67 - 68:169 - 82.
  • 7Fluent. Inc. The user guide of Fluent 6.3. 2006.
  • 8Martinuzzi R. Experimentelle untersuchung der umstramung wandgebundener, rechteckiger, prismatischer Hindernisse. Dissertation. University Erlangen - Nfirnberg; 1992.
  • 9Lipps F W, Vant-Hull L L. A cell-wise method for the optimization of large central receiver systems[J]. Solar Energy 1978, 20(6): 505-516.
  • 10Siala F M F, Elayeb M E. Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J]. Renewable Energy 2001, 23(1): 77-92.

共引文献50

同被引文献40

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部