期刊文献+

面向多源社交网络舆情的情感分析算法研究 被引量:9

Research on sentiment analysis algorithm for public opinion of multi-source social networks
下载PDF
导出
摘要 随着互联网技术的快速发展,社交媒体的多元化也应运而生,因此如何有效分析多源社交网络舆情成为当前研究的热点。文中结合舆情信息的抓取、分词、过滤停用词等三个核心处理模块,基于舆情的情感及趋向性分析,提出了一种面向多源社交网络舆情的情感分析算法。仿真结果表明,该算法在多源社交网络舆情的分析处理中检测效果良好,说明该算法有效。文中的算法研究,可为该领域的进一步研究提供有价值的参考。 With the rapid development of Internet technology,the diversification of social media has also emerged.Therefore,how to effectively analyze the multi-source social network public opinion has become a hot topic of current research.This paper combines three core processing modules of lyric information,such as crawling,word segmentation and filtering stop words,proposes a sentiment analysis algorithm for multi-source social networks based on lyric emotion and trend analysisi.The simulation results show that the proposed algorithm performs well in the analysis and processing of multi-source social network public opinion,which indicates that the algorithm is effective,and can provide valuable reference for further research in this field.
作者 彭浩 朱望鹏 赵丹丹 吴松洋 PENG Hao;ZHU Wang-peng;ZHAO Dan-dan;WU Song-yang(Department of computer science and Engineering,Zhejiang Normal University,Jinhua 321004,Zhejiang Province,China;School of Computer Engineering and Science,Shanghai 201900,China;The Third Research Institute of Ministry of Public Security,Shanghai 201204,China)
出处 《信息技术》 2019年第2期43-48,共6页 Information Technology
基金 国家自然科学基金项目(61602418) 教育部人文社科研究项目(15YJCZH125) 浙江省公益技术研究社会发展项目(2016C33168) 浙江省自然科学基金(LQ16F02-0002) 信息网络安全公安部重点实验室开放课题(C15610) 上海市信息安全综合管理技术研究重点实验室开放课题(AGK2018001)
关键词 社交网络 舆情分析 情感发现 social network public opinion analysis emotional discovery
  • 相关文献

参考文献7

二级参考文献42

  • 1程辉.基于时间序列的网络舆情预测模型.网际网路技术学刊,2008,9(5):16-17.
  • 2周亚东,孙钦东,管晓宏,李卫,陶敬.流量内容词语相关度的网络热点话题提取[J].西安交通大学学报,2007,41(10):1142-1145. 被引量:27
  • 3黄永光.面向变异短文本的快速聚类算法[C]//全国网络与信息安全研讨会,2005.
  • 4O' Connor B, Balasubramanyan R, Routledgeb, et al. From Tweets to Polls : Linking Text Sentiment to Public Opinion Time Series [ C ]//Pro- ceedings of the 4th International AAAI Conference on Weblogs and So- cial Media Washington ,2010 : 122 - 129.
  • 5Cheng J, Sun A, Hu D, et al. An Information Diffusion-based Recom- mendation Framework foricro -blogging[ J]. Journal of the Association for Information Systems,2011,12 ( 7 ) :463 - 486.
  • 6张静.基于微博的网络热点发现模型及平台研究[M].华中科技大学,2010.
  • 7Shaw W. Performance standards and evaluations in IR test collections: vector-space and other retrieval models [ J ]. Inf. Process. Manage. , 1997, 33(1) : 15 -36.
  • 8Wang Yongheng, et al. Parallel Mining of Top-K Frequent Item sets in Very Large Text Database [ D ]. Advances in Web-Age Information Management. Hangzhou, China: Springer, 2005: 706-712.
  • 9Jones S A. Statistical Interpretation of Term Specificity and Its Appli- cation in Retrieval [ J ]. Journal of Documentation, 1972, 28 ( 1 ) : 11 -21.
  • 10张虹,钟华,赵兵.基于数据挖掘的网络论坛话题热度趋势预报[J].计算机工程与应用,2007,43(31):159-161. 被引量:23

共引文献60

同被引文献70

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部