期刊文献+

三维有挠率引力中的守恒荷

Conserved charge in three-dimensional gravity with torsion
下载PDF
导出
摘要 由于引力场的微分同胚不变性,定义能量一直是引力理论中的难题,人们为此发展了一系列方法.本文将Wald基于拉格朗日形式体系构造引力场的准局域能量的方法推广到三维有挠率引力的情形,给出了Mielke-Baekler (MB)模型中的守恒的能量与角动量,并计算了有挠率的BTZ黑洞解的守恒荷.所得结果与基于哈密顿形式体系的方法给出的守恒荷相一致. The definition of energy is a long-standing difficult problem in gravity theory because of the diffeomorphism invariance of the gravity field.Various approaches have been developed.We have generalized Wald’s approach for the constructing quasi-local energy of gravity field,which is based on the Lagrangian formulation,to the three-dimensional gravity with torsion,and obtained the conserved energy and angular momentum for the Mielke-Baekler(MB)model.For BTZ black hole with torsion,the conserved charges are consistent with those obtained from the approach based on Hamiltonian formulation.
作者 魏诚浩 宁波 WEI Cheng-Hao;NING Bo(College of Physical Science and Technology,Sichuan University,Chengdu 610064,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期87-90,共4页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金青年基金(11505119)
关键词 准局域能量 Mielke-Baekler模型 挠率 引力 Quasi-local energy Mielke-Baekler model Torsion Gravity
  • 相关文献

参考文献1

二级参考文献12

  • 1Barth W P, Hulek K, Peters C A M, et al. Com- pact complex surfaces [ M]. Berlin/New York: Springer, 2004.
  • 2Abood H M, Mohammad N J. Locally conformal k/ihler manifold of pointwise holomorphic sectional curvature tensor [J]. International Mathematical Fo- rum, 2010, 45: 2213.
  • 3Dragomir S, Duggal K L. Indefinite locally confor- mal Kgthler manifolds[J]. Differential Geometry and its Applications, 2007, 25: 8.
  • 4Gherghe C. Harmonic maps and stability on locally conformal K/ahler manifolds[J]. Journal of Geometry and Physics, 2013, 70: 48.
  • 5Vilcu G E. Ruled CR-suhmanifolds of locally confor- mal Kihler manifolds[J]. Journal of Geometry and Physics, 2012, 62: 1366.
  • 6Vaisman I. On local and global conformal Kihler manifolds[J]. Trans Amer Math Soc. 1980, 262:533-542.
  • 7Huybrechts D. Complex geometry: an Introduction [M]. Berlin/New York: Springer, 2005.
  • 8Dragomir S, Ornea L. Locally conformal Ktihler ge- ometry[M]. Progress in Math 155. Boston/Basel: Birkhtiuser, 1998.
  • 9Fino A, TOmassini A. On astheno-K/ihler metrics [J]. J London Math Soc. 2011, 83: 290.
  • 10Deligne P, Griffiths P, Morgan J, et al. motopy theory of Kihler manifolds [J ]. Math Real ho- Invent, 1975, 29: 245.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部