期刊文献+

基于相位一致性的低对比度纸病识别算法研究

Identification Algorithm of Low Contrast Paper Defects Based on Phase Congruency
下载PDF
导出
摘要 针对机器视觉检测低对比度纸病,存在常规的阈值分割会引起低对比度纸病信息丢失以及边缘检测存在鲁棒性差的问题,本课题提出了一种基于相位一致性算法识别低对比度纸病的方法,并与常规的阈值分割以及边缘检测中具有代表性的canny算子进行了对比分析。结果表明,当识别低对比度纸病时,本课题提出的方法不仅保留的有用信息较常规阈值分割的多,而且鲁棒性较canny算子的边缘检测好。 According to the phenomenon of losing some important information in conventional threshold segmentation and poor robustness in edge detection when detecting low contrast paper defects based on machine vision,this paper proposed a method to identify low contrast paper defects based on the idea of phase congruency,and verified the feasibility.In this paper,not only the feature extraction method of phase congruency of low contrast paper image was given,but also the generation method of adaptive threshold used in segmentation was given,and compared with the conventional threshold segmentation and the representative canny algorithm in edge detection in experiment.The experimental results showed that when detecting low contrast paper defects,the proposed method preserved more useful information than the conventional threshold segmentation,and the robustness was better than canny edge detection.
作者 盛大富 王亦红 SHENG Dafu;WANG Yihong(School of Energy and Electrical Engineering,Hohai University,Nanjing,Jiangsu Province,211100)
出处 《中国造纸》 CAS 北大核心 2019年第1期50-53,共4页 China Pulp & Paper
关键词 纸病识别 图像分割 相位一致性 自适应阈值 paper defect identification image segmentation phase congruency adaptive threshold
  • 相关文献

参考文献6

二级参考文献44

  • 1徐志鹏,须文波.基于小波奇异性的纸病检测[J].中国造纸学报,2004,19(2):146-151. 被引量:4
  • 2肖超云,朱伟兴.基于Otsu准则及图像熵的阈值分割算法[J].计算机工程,2007,33(14):188-189. 被引量:54
  • 3周新伦 柳建 等.数字图像处理[M].北京:国防工业出版社,1986..
  • 4范九伦,赵凤,张雪峰.三维Otsu阈值分割方法的递推算法[J].电子学报,2007,35(7):1398-1402. 被引量:69
  • 5[6]Nikhil R,Pal,Sankar.A review on image segmentation techniques.Pattern Rcognition 1993,26(9):1277-1294.
  • 6[7]Kittler J,Illingworth J.On threshold selection using clustering criteria.IEEE Trans.1985,SMC-15:652-655.
  • 7章毓普.图象理解和分析 [M].北京:清华大学出版社,2000.
  • 8章毓普.图像分割 [M].北京:科学出版社,2001.
  • 9韩力群.人工神经网络教程[M].北京:科学出版社,2005.
  • 10I Gallant Stephen I. Neural network learning and expert systems [M] London: The MIT Press,1993.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部