摘要
利用半连续函数给出对可数仿紧空间和可数中紧空间的若干等价刻画,主要结论为:X为可数仿紧空间当且仅当对任一递减的函数列{fn∈U(X):n∈N}且fn→0,存在函数列{gn∈L(X):n∈N}和{hn∈U(X):n∈N},使得对每一n∈N,fn≤gn≤hn且hn→0;X为可数中紧空间当且仅当对X上的每一上半连续函数f,存在下半连续且k-上有界函数φ(f),使得f≤φ(f)。
Some characterizations of countably paracompact spaces and countably mesocompact spaces,were given with semi-continuous funtions.The main results are as follows.X is a countably paracompact if and only if for every decreasing sequences{gn∈L(X):n∈N}and{hn∈U(X):n∈N}of functions such that for each n∈N fn≤gn≤hn and hn→0.X is a countably mesocompact if and only if for each upper semi-continuous function f,there exists a lower semi-continuous and k-upper bounded functionφ(f),such that f≤φ(f).
作者
曹丹
杨二光
CAO Dan;YANG Erguang(School of Mathematics&Physics Science and Engineering,Anhui University of Technology,Ma’anshan 243032,China)
出处
《安徽工业大学学报(自然科学版)》
CAS
2018年第3期282-286,共5页
Journal of Anhui University of Technology(Natural Science)
关键词
可数仿紧空间
可数中紧空间
半连续函数
上有界函数
countably paracompact spaces
countably mesocompact spaces
semi-continuous functions
upper bounded functions