期刊文献+

一种改进的深度学习模型自适应学习率策略 被引量:5

An Improved Depth Learning Model Adaptive Learning Rate Strategy
下载PDF
导出
摘要 针对当前深度学习中学习率不能完全拟合模型运行状态,导致收敛速度较慢和误差较大的问题,提出一种自适应学习率策略AdaDouL。该策略是在上一回合学习率的基础上利用当前的梯度去自适应调节学习率的大小,并根据损失函数的增量正负值给出2种不同下降速度的学习率形式,以模型的输出和标签之间的损失函数作为评价指标,在Vot2015数据集上使用构建的卷积神经网络模型进行实验验证。验证结果表明:使用该学习策略的深度模型相比使用AdaGrad和AadDec学习策略具有更快的收敛速度,并且收敛误差值也有一定降低;进行检测测试时,中心误差精度提升了4.5%,检测准确率上升了2.1%。 In view of the deep learning rate can not completely fit the running state model,resulting in slow convergence speed and large error,this paper proposes an adaptive learning rate strategy AdaDouL.Based on the learning rate of the last round,use the current gradient to adaptively adjust the learning rate,and according to the increment plus or minus value of the loss function,2 learning rates of different descent rates are given.With the loss of function between the model output and the label as the evaluation index,the simulation is carried out,using convolutional neural network model on Vot2015 data sets.The results show that the depth model using learning strategies has faster convergence speed than learning strategies using AdaGrad and AadDec,convergence error is reduced.The test shows that center error accuracy increased by 4.5%,the detection rate increased by 2.1%.
作者 刘帆 刘鹏远 张峻宁 徐彬彬 Liu Fan;Liu Pengyuan;Zhang Junning;Xu Binbin(No.4 Department,Shijiazhuang Campus of PLA University of Army Engineering,Shijiazhuang 050003,China)
出处 《兵工自动化》 2019年第1期72-77,共6页 Ordnance Industry Automation
基金 国家自然科学基金(51205405 51305454)
关键词 深度学习 卷积神经网络 学习率 自适应策略 目标检测 depth learning convolutional neural network learning rate adaptive strategy object detection
  • 相关文献

参考文献7

二级参考文献119

  • 1任翠池,杨淑莹,洪俊.基于BP神经网络的手写字符识别[J].天津理工大学学报,2006,22(4):80-82. 被引量:4
  • 2张斌,赵玮烨,李积宪.基于BP神经网络的手写字符识别系统[J].兰州交通大学学报,2007,26(1):18-20. 被引量:1
  • 3金连文,徐秉铮.基于多级神经网络结构的手写体汉字识别[J].通信学报,1997,18(5):21-27. 被引量:19
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 5Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 6Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 7Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 8Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 9Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 10Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.

共引文献706

同被引文献47

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部