期刊文献+

基于纤维蛋白原浓度的肝癌肝移植复发预测模型 被引量:2

A scoring model for prediction of hepatocellular carcinoma recurrence after liver transplantation based on fibrinogen concentration
下载PDF
导出
摘要 目的探讨肝癌肝移植术后复发的危险因素,建立多因素的肝癌肝移植复发预测模型,为评估肝癌肝移植患者预后和筛选合适的肝癌肝移植患者提供依据。方法回顾性分析中山大学附属第三医院173例行肝移植术的肝细胞癌患者的临床资料及随访资料,通过单因素分析和多因素Cox回归分析筛选肝癌肝移植术后复发的独立危险因素,将筛选出的危险因素通过Logistic回归建立回归模型。结果经单因素分析和多因素Cox回归分析,发现术前纤维蛋白原浓度、血管受侵、肿瘤总体积>115 cm^3以及甲胎蛋白(alpha fetoprotein,AFP)> 400 ng/ml是肝癌肝移植术后复发的独立危险因素。通过Logistic回归建立复发预测模型:Y=-3.047+0.699×纤维蛋白原+1.568×肿瘤总体积> 115 cm^3 (0=否,1=是)+0.317×血管受侵(0=无,1=有)+1.6×AFP> 400 ng/ml(0=否,1=是)。研究建立的模型对肝癌肝移植术后复发的预测有较高的敏感度(86.6%)、特异性(65.8%),受试者工作特征(receiver operating characteristic,ROC)曲线下面积为0.800,高于米兰标准(0.687)、杭州标准(0.703)。符合Y≤-0.79的患者5年无复发生存率(recurrence free survival,RFS)显著高于Y>-0.79的患者(92.3%比34.1%,P <0.001)。符合米兰标准、杭州标准的患者中,Y≤-0.79和Y>-0.79的患者5年RFS仍存在显著差异(94.9%比40.9%,P <0.001;93.6%比45.7%,P <0.001)。结论术前纤维蛋白原、血管受侵、肿瘤总体积> 115 cm^3以及AFP> 400 ng/ml是肝癌肝移植术后复发的独立危险因素。研究建立的基于纤维蛋白原浓度的预测模型对肝癌肝移植术后复发的预测有较高的敏感度及特异性,能够将可能受益的患者筛选出来。 Objective To analyse the risk factors of hepatocellular carcinoma(HCC)recurrence after liver transplantation and to build a logistic regression model to predict HCC recurrence which helps patient's selection.Methods A total number of 173 patients diagnosed with HCC and received liver transplantation were enrolled in the research.Univariate and multivariate Cox analysis were used to explore the risk factors of HCC recurrence after liver transplantation,logistic regression was used to build a scoring model.Results Univariate and multivariate Cox regression analysis showed that plasma fibrinogen concentration,macrovascular invasion,total tumor volume >115 cm3 and alpha fetoprotein(AFP) >400 ng/ml were independent risk factors of HCC recurrence after liver transplantation.The logistic regression model was,Y=logit(P)=-3.047+0.699×fibrinogen concentration+1.568×TTV >115 cm3(0=no,1=yes)+0.317×macrovascular invasion(0=no,1=yes)+1.6×AFP >400 ng/ml(0=no,1=yes).The sensitivity and specificity in predicting HCC recurrence were 86.6%and 65.8%.The area under receiver operating characteristic(ROC)curve was 0.800,compared with 0.687 of Milan criteria and 0.703 of Hangzhou criteria.The 5-year RFS of patients with model score Y≤-0.79 was significantly higher than patients with Y >-0.79(92.3%vs.34.1%,P<0.001).Within patients who meet Milan and Hangzhou criteria,the 5-year RFS of patients with Y≤-0.79 was also significantly higher than patients with Y >-0.79(94.9%vs.40.9%,P<0.001;93.6%vs.45.7%,P<0.001,respectively).Conclusion Plasma fibrinogen concentration,macrovascular invasion,total tumor volume >115 cm^3 and AFP >400 ng/ml were independent risk factors of HCC recurrence after liver transplantation.The logistic regression models we built was sensitive and specific in predicting HCC recurrence after liver transplantation.
作者 曾凯宁 汪国营 杨卿 姚嘉 李洋 张剑文 张英才 李华 易述红 汪根树 张剑 杨扬 陈规划 Zeng Kaining;Wang Guoying;Yang Qing;Yao Jia;Li Yang;Zhang Jianwen;Zhang Yingcai;Li Hua;Yi Shuhong;Wang Genshu;Zhang Jian;Yang Yang;Chen Guihua(the Third Affiliated Hospital of Sun Yat-sen University,Guangzhou 510630,Guangdong,China)
出处 《实用器官移植电子杂志》 2019年第1期35-39,共5页 Practical Journal of Organ Transplantation(Electronic Version)
基金 国家"十三五"科技重大专项(2017ZX10203205-006-001) 广东省科技计划项目(2014B020228003) 广东省自然科学基金(2015A030312013) 广州市科技计划项目(2014Y2-00200 2014Y2-00544 201508020262) 广东省医学科学技术研究基金项目(A2017370)
关键词 肝癌 肝移植 复发 预测模型 Hepatocellular carcinoma Liver transplantation Recurrence Model
  • 相关文献

参考文献1

二级参考文献10

  • 1Copas JB,Corabitt P.Overestimation of the receiver operating characteristic curve for logistic regression.Biometrika,2002,89 (2):315-331.
  • 2Pepe MS,Cai TX,Zhang Z.Combining predictors for classification using the area under the ROC curve.UW Biostatistics Working Paper Series,2004.
  • 3Pepe MS,Thompson ML.Combining diagnostic test results to increase accuracy Biostatistics,2000,1 (2):123-140.
  • 4Pepe MS.The Statistical Evaluation of Medical Tests for Classification and Prediction.United Kingdom Oxford:University Press,2003.
  • 5Robert JG.et al,Determination and interpretation of the Optimal Operating Point for ROC Curves derived through generalized linear models.Understanding Statistics.2003,2(4):219-242.
  • 6Fisher RA.The use of multiple measurements in taxonomic problems.Annals of Eugenics.1936,7:179-188.
  • 7Sherman RP.The limiting distribution of the maximum rank correlation estimator.1993 Econometrics,1993,61:123-137.
  • 8Metz CE,Herman BA,Shen J H.Maximum-likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data.Statist,Med,1998,17:1033-1053.
  • 9Hanley JA,McNeil BJ.The meaning and use of the area under a receiver operating characteristic (ROC) curve.Radiology,1982,143(4):29-36.
  • 10刘润幸.使用SPSS作多变量观察值的ROC曲线分析[J].中国公共卫生,2003,19(9):1151-1152. 被引量:128

共引文献54

同被引文献23

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部