摘要
本文利用NASA发布的MODIS气溶胶光学厚度产品,对西南地区2001~2016年气溶胶光度厚度空间分布和时间演变特征进行了分析,研究发现:(1)西南地区年均气溶胶光学厚度空间分布特征整体表现为东部高于西部,海拔低的地区气溶胶光学厚度高于海拔高的地区。高值中心位于四川盆地南部,低值区位于川西高原和云南北部地区。(2)西南地区季节气溶胶光学厚度空间分布特征与年均相似。(3)就西南各地区而言,重庆气溶胶光学厚度最大,其次是四川盆地和贵州地区,再次是云南地区,川西高原地区气溶胶光学厚度最小。(4) 2001~2016年,西南地区年均气溶胶光学厚度呈显著减少趋势。夏季和秋季气溶胶光学厚度年际变化浮动较大,也具有显著的减少趋势。
In this paper,the spatial distribution and temporal change characteristics of aerosol optical thickness in Southwest China from 2001 to 2016 are analyzed by using MODIS aerosol optical thickness products formed by NASA.The results show that:(1)The performance of spatial distribution characteristics of annual average aerosol optical thickness is showed that aerosol optical thickness is higher in the east than in the west,and the aerosol optical thickness in low altitude is higher than that in the high altitude.The high value center is located in the southern part of the Sichuan basin,and the low value area is located in the western plateau and northern part of Yunnan.(2)The seasonal spatial distribution characteristics of aerosol optical thickness is similar to the annual characteristic.(3)In Southwest China,the aerosol optical thickness in Chongqing is the largest,followed by the Sichuan basin and Guizhou,and again in Yunnan.The aerosol optical thickness is the smallest in the western Plateau.(4)In Southwest China,,from 2001 to 2016,the annual aerosol optical thickness shows a significant decrease trend.The variation of aerosol optical thickness in summer and autumn greatly,and the aerosol optical thickness in summer and autumn show significant reduction trends.
作者
耿蔚
林丹
王维佳
杨进
GENG Wei;LIN Dan;WANG Weijia;YANG Jin(Sichuan Meteorological Disaster Prevention Technology Center,Chengdu 610072,China;Key Laboratory for Cloud Physics of China Meteorological Administration,Beijing 100081,China;Weather Modification Office of Sichuan Province,Chengdu 610072,China)
出处
《高原山地气象研究》
2018年第4期85-90,共6页
Plateau and Mountain Meteorology Research
基金
中国气象局云雾物理环境重点实验室开放科研课题2017Z01610
四川省留学回国人员科技活动择优资助项目2018-72
四川省气象局青年基金课题2018-青年-19