期刊文献+

鲁棒支持向量机及其稀疏算法 被引量:6

Robust support vector machines and their sparse algorithms
下载PDF
导出
摘要 基于非凸光滑损失的鲁棒支持向量机分类模型对异常点具有鲁棒性,但已有求解算法需迭代求解二次规划,计算量大且收敛速度慢,不适合训练大规模数据问题。为了克服这些缺点,首先给出收敛速度更快的方法求解鲁棒支持向量机模型;然后基于最小二乘的思想,提出了一种推广的指数鲁棒最小二乘支持向量机模型及其快速收敛的求解算法,并从理论上解释了模型的鲁棒性;最后利用核矩阵的低秩近似,提出了适于处理大规模训练问题的稀疏鲁棒支持向量机算法和稀疏指数鲁棒最小二乘支持向量机算法。实验结果表明,新算法在收敛速度、测试精度和训练时间等方面均优于相关算法。 Based on nonconvex and smooth loss,the robust support vector machine(RSVM)is insenstive to outliers for classification problems.However,the existing algorithms for RSVM are not suitable for dealing with large-scale problems,because they need to iteratively solve quadratic programmings,which leads to a large amount of calculation and slow convergence.To overcome this drawback,the method with a faster convergence rate is used to solve the RSVM.Then,by using the idea of least square,a generalized exponentially robust LSSVM(ER-LSSVM)model is proposed,which is solved by the algorithm with a faster convergence rate.Moreover,the robustness of the ER-LSSVM is interpreted theoretically.Finally,ultilizing low-rank approximation of the kernel matrix,the sparse RSVM algorithm(SR-SVM)and sparse ER-LSSVM algorithm(SER-LSSVM)are proposed for handing large-scale problems.Many experimental results illustrate that the proposed algorithm outperforms the related algorithms in terms of convergence speed,test accuracy and training time.
作者 安亚利 周水生 陈丽 王保军 AN Yali;ZHOU Shuisheng;CHEN Li;WANG Baojun(School of Mathematics and Statistics,Xidian Univ.,Xi'an 710071,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2019年第1期64-72,共9页 Journal of Xidian University
基金 国家自然科学基金(61772020)
关键词 鲁棒支持向量机 非凸光滑损失 稀疏解 低秩近似 robust support vector machines nonconvex and smooth loss sparse solution low-rank approximation
  • 相关文献

参考文献3

二级参考文献21

  • 1徐继生,李雪璟,刘裔文,敬敏.磁偏角和热层风对中纬电离层TEC经度分布的影响[J].地球物理学报,2013,56(5):1425-1434. 被引量:4
  • 2刘瑞源,权坤海,戴开良,罗发根,孙宪儒,李忠勤.国际参考电离层用于中国地区时的修正计算方法[J].地球物理学报,1994,37(4):422-432. 被引量:40
  • 3LIU Ruiyuan,LIU Shunlin,XU Zhonghua,WU Jian,WANG Xianyi,ZHANG Beichen,HU Hongqiao.Application of autocorrelation method on ionospheric short--term forecasting in China[J].Chinese Science Bulletin,2006,51(3):352-357. 被引量:17
  • 4邓乃扬 田英杰.数据挖掘中的新方法[M].北京:科学出版社,2004..
  • 5Akam A, Alberca L. Multi Regression Method for foF2 Short-term Prediction [R]. Poland: Space Research Center, 1999: 140-142.
  • 6McNamara L F, Angling M J, Elvidge S, et al. Assimilation Procedures for Updating Ionospheric Profiles below the F2 Peak[J]. Radio Science, 2013, 48(2), 143-157.
  • 7Zhao X K, Ning B Q, Liu L B. A Prediction Model of Short-term Ionospheric foF2 Based on AdaBoost [J]. Advance in Space Research, 2013, 53(3): 387-394.
  • 8Sun S J, Ban P P, Chen C. An Empirical Correction Model for Low-latitude Storm-time Ionospheric foF2 Considering E×B Drift [J]. Advance in Space Research, 2012, 49(9): 1356-1362.
  • 9Wang R P, Zhou C. Predicting foF2 in the China Region Using the Neural Networks Improved By the Genetic Algorithm[J]. Journal of Atmospheric and Solar Terrestrial Physics, 2013, 92: 7-17.
  • 10Chen C, Wu Z S, Ban P P, et al. Diurnal Specification of the Ionospheric foF2 Parameter Using a Support Vector Machine [J]. Radio Science, 2010, 45(5): 2629-2642.

共引文献22

同被引文献36

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部