摘要
针对滑模控制参数难整定的问题,结合粒子群优化算法设计滑模控制器。选取有关控制器输出和系统跟随误差的函数作为滑模参数优化目标,并以该目标函数为粒子群的适应度值,寻优处理后获得等效控制、切换项及指数趋近率系数,从而缩短到达滑模面时间,减小控制器输出抖振,有效改善滑动阶段动态特性。在MATLAB中仿真表明:该方法对被控对象参数波动具有较强鲁棒性,系统响应快,跟随性能好。
In order to solve the problem of difficult parameters setting of sliding mode control which has more parameters,a sliding mode controller is designed based on particle swarm optimization algorithm.The function related to controller output and system following error is selected as the sliding mode parameter optimization target,and this objective function is used as the fitness value of the particle swarm to obtain the equivalent control,switching term,and exponent reaching rate coefficient after optimization processing.Therefore,the time for reaching the sliding mode surface is shortened,chattering of the controller output is reduced,and the dynamic characteristics of the sliding stage are effectively improved.The simulation in MATLAB shows that the system using this method has strong robustness to the parameter fluctuations of the controlled object,as well as faster response and better follow-up performance.
作者
孙明
SUN Ming(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China)
出处
《机械工程与自动化》
2019年第1期173-175,共3页
Mechanical Engineering & Automation
关键词
粒子群优化
滑模控制
参数整定
particle swarm optimization
sliding mode control
parameter tuning