期刊文献+

基于深度学习变分自动编码器算法的电价执行稽查研究 被引量:3

Research on Electricity Price Inspection Implementation Based on Deep Learning Variational Autoencoder Algorithm
下载PDF
导出
摘要 提出一种利用深度学习中的变分自动编码器技术进行电价执行稽查的方法,利用变分自动编码器异常检测算法模型既可以作为判别模型又可以作为生成模型的特点,有效解决了目前电价执行稽查多种异构参数的计算问题,通过重构概率来有效判定用电客户是否异常。同时,由于算法判别过程中生成模型可对数据进行同特征恢复,有效解决样本数据不完整问题。通过试验测试证明了算法有效性,解决了不同电价执行稽查工作中数据异质,提高了稽查准确性,为电力营销工作提供了有效的保障。 A method of using deep learning variational autoencoder technology for electricity price inspection implementation is put forward.The anomaly detection algorithm model of the variational autoencoder model can be used both as a discriminant model and as a feature of the generation model.It can effectively solve the calculation problems of multiple heterogeneous parameters of current electricity price execution audit and it effectively determines whether the electricity customer is abnormal by reconstructing the probability.At the same time,due to the generation of the model in the algorithm discriminating process,the same feature recovery can be performed on the data.It effectively solves the problem of incomplete sample data.The experimental results prove the effectiveness of the algorithm.It solves the heterogeneity of data in the implementation of different electricity price auditing work,improves the accuracy of auditing and provides effective protection for power marketing.
作者 高曦莹 关艳 杨飞龙 曹世龙 王英新 GAO Xiying;GUAN Yan;YANG Feilong;CAO Shilong;WANG Yingxin(Electric Power Research Institute of State Grid Liaoning Electric Power Co.,Ltd.,Shenyang,Liaoning 110006,China;State Grid Shenyang Power Supply Company,Shenyang,Liaoning 110004,China)
出处 《东北电力技术》 2018年第11期58-62,共5页 Northeast Electric Power Technology
关键词 深度学习 变分自动编码 电价执行稽查 数据异质 deep learning variational autoencoder electricity price inspection implementation data heterogeneity
  • 相关文献

参考文献3

二级参考文献44

  • 1程开明.统计数据预处理的理论与方法述评[J].统计与信息论坛,2007,22(6):98-103. 被引量:33
  • 2Nizar A H, Dong Z Y, Wang Y. Power utility nontechnical loss analysis with extreme learning machine model[J]. IEEE Transactions on PowerSystems, 2008, 23(3): 946-955.
  • 3Gerbec D, Gasperic S, Smon I, et al. Allocation of the load profiles to consumers using probabilistic neural networks[J]. IEEE Transactions on Smart Grid, 2005, 20(2): 548-555.
  • 4Nagi J, Tiong K S, Ahmed S K, et al. Non-technical loss detection for metered customers in power utility using support vector machines[J]. IEEE Transactions on Power Delivery, 2010, 25(2):1162-1171.
  • 5Nagi J, Yap K S, Tiong S K, et al. Detection of abnormalities and electricity theft using genetic support vector machines[C]//TENCON-IEEE Region 10 Conference Proceedings. Hyderabad, India: 1EEE, 2008: 1-6.
  • 6Nagi J, Yap K S, Tiong S K, et al. Improving SVM-based nontechnical loss detection in power utility using the fuzzy inference sYstem[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1284-1285.
  • 7Leon C. Variability and trend-generalized rule induction model to NTL detection in power companies[J]. IEEE Transactions on Power Systems, 2011, 26(4): 1798-1807.
  • 8Jiang R, Tagaris H, Lachsz A, et al. Wavelet based feature extraction and multiple classifiers for electricity fraud detection[C]//Proc Transmiss Distrib ConfExhibit. Yokohama, Japan: IEEE, 2002: 2251-2256.
  • 9Kim S I, Kim H S, Joo Y J, et al. Power usage pattern and consumption separation method by load devices based on remote metering system's Load profile data[C]//2011 11th international conference on control, automation and systems (ICCAS). South Korea 1EEE, 2011: 1669-1671.
  • 10Chen S, Zhan T, Huang C, et al. Nontechnical loss and outage detection using fractional-order self-synchronization error-based fuzzy petri nets in micro-distribution systems[J]. IEEE Transactions on SmartGrid, 2015, 6(1): 411-420.

共引文献24

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部