摘要
本文研究了Q_p^d上的tiling集和谱的一个刻画.利用函数tiling,正交性与填充之间的关系,得到:如果Λn?Q_p^d是弱收敛于集合Λ的一个一致离散集合序列,并且对任意n,集合序列Λ_n是一个tiling集(或谱),那么Λ也是一个tiling集(或谱).
In this paper,we study a characterization of spectra and tiling sets on Qp^d.By using the tiling by functions and the relationship between orthogonality and packing,we obtain that for a sequence of uniformly discrete sets∧n■Qdp,which converge weakly to a set∧,if∧n is a tiling set(or a spectrum)for every n,then∧is also a tiling set(or a spectrum).
作者
买买提艾力.喀迪尔
MAMATELI Kadir(School of Mathematics and Statistics, Kashgar University, Kashgar 844006, China)
出处
《数学杂志》
2019年第1期60-66,共7页
Journal of Mathematics
基金
喀什大学博士专项基金资助项目((15)2545)
关键词
p-进域
弱收敛
谱
TILE
p-adic number field
weak convergence
spectral set
tile