期刊文献+

变温拉曼研究炭纤维增强聚酰亚胺复合材料的界面微观力学行为(英文) 被引量:5

Temperature-variable Raman scattering study on micromechanical properties of the carbon fiber reinforced polyimide composite film
下载PDF
导出
摘要 采用变温拉曼光谱mapping扫描技术研究了在升温过程中炭纤维(CF)增强聚酰亚胺(PI)/碳纳米管(CNTs)复合材料的微观力学行为。其中CF为增强材料,CNTs作为应力传感媒介,两者都具有拉曼温度敏感性。获得了各温度条件下(25~300℃) CF/CNTs-PI复合材料界面微区的应力分布变化图。在200℃以下,CF/CNT-PI薄膜中纤维与界面区域压应力分别在122 MPa与74 MPa附近,应力分布从纤维到基体逐渐减小。200℃为残余应力消除温度,CF/CNT-PI薄膜内部应力接近于0 MPa。然而,当加热超过200℃时,薄膜主要承受拉应力,且主要分布在CF上。此外,发现CF与基体之间的应力传递小于100%。这些结果均证明复合材料中的应力随温度而变化,而CF具有优异的增强作用。 Temperature-variable Raman spectroscopy equipped with mapping function was used to investigate the micro-mechanical properties of a carbon fiber(CF)reinforced polyimide(PI)composite film using carbon nanotubes(3 wt%)dispersed in PI as the stress sensor.The stress distributions on CFs and the interface region during heating from 25 to 300 ℃ were mapped based on the stress sensitive Raman G'band(around 2679 cm^-1 )shifts of CNTs.Results indicate that thermal motion of PI chain affect the mechanical properties when the CF/CNT-PI film was heated up to 300 ℃.Both CFs and interface region were compressively stressed below 200 ℃.The compressive stress decreased with temperature and was approximately eliminated at around 200 ℃.Tensile stress developed above 200 ℃ and increased with temperature,which was distributed mainly on CFs.Furthermore,the stress transfer between CFs and matrix was less than 100% due to the thermal stress hysteresis in the PI matrix.
作者 冉敏 贾立双 程朝歌 吴琪琳 RAN Min;JIA Li-shuang;CHENG Chao-ge;WU Qi-lin(State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University,Shanghai 201620,China;College of Materials Science and Engineering,Donghua University,Shanghai 201620,China)
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2019年第1期105-109,128,共6页 New Carbon Materials
基金 国家重点研发计划项目(2016YFB0303201) 上海市教育委员会科研创新重点项目(14ZZ069)~~
关键词 炭纤维 界面微观力学 变温拉曼 应力 Carbon fiber Interfacial micro-mechanics Variable temperature Raman Stress
  • 相关文献

参考文献1

二级参考文献23

  • 1Jones J B, Barr J B, Smith R E. Analysis of flaws in high-strength carbon fibres from mesophase pitch[J]. Journal of Materials Science, 1980, 15(10):2455-2465.
  • 2Burnay S, Sharp J. Defect structure of PAN-based carbon fibres[J]. Journal of Microscopy, 2011, 97(1-2):153-163.
  • 3Cantwell W, Morton J. The significance of damage and defects and their detection in composite materials:A review[J]. The Journal of Strain Analysis for Engineering Design, 1992, 27(1):29-42.
  • 4Kaushik V K, Bhardwaj A. Characterization of carbon fibre surfaces using electron spectroscopy for chemical analysis[J]. Polymer Testing, 1994, 13(4):355-362.
  • 5Li W, Long D, Miyawaki J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of materials science, 2011, 47(2):919-928.
  • 6Montes-Morán M A, Young R J. Raman spectroscopy study of high-modulus carbon fibres:effect of plasma-treatment on the interfacial properties of single-fibre-epoxy composites:Part II:Characterisation of the fibre-matrix interface[J]. Carbon, 2002, 40(6):857-875.
  • 7Wang F, Li R, Sun X, et al. Confocal Raman spectromicroscopy for tin-core/carbon-shell nanowire heterostructure[J]. Applied Surface Science, 2011, 258(1):394-398.
  • 8Kim C, Park S-H, Cho J-I, et al. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning[J]. Journal of Raman Spectroscopy, 2004, 35(11):928-933.
  • 9Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information[J]. Carbon, 2005, 43(8):1731-1742.
  • 10Hao X, Yonggen L, Mouhua W, et al. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J]. Carbon, 2012, 52:427-439.

共引文献8

同被引文献28

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部