期刊文献+

开架式观测型ROV定点悬停控制方法研究 被引量:7

Control Method for Fixed Point Hovering of Open-shelf Observational ROV
下载PDF
导出
摘要 定点悬停能力是水下机器人重要的控制性能之一。水下机器人在水下运动时常受到波浪和海流等影响,使常规运动控制方法存在稳定性差的问题,需要一种抗干扰能力强和适应性好的运动控制方法。针对设计的ROV和工作要求,分别设计了传统PID控制器、模糊控制器和模糊PID控制器,并通过仿真分析对比了在海流和波浪等干扰的条件下各控制器的动态性能。试验结果表明:在定点悬停控制中,PID控制器适应能力差,抗干扰能力弱,对环境变化敏感;模糊控制器在复杂环境中具有良好的响应特性和抗干扰能力,但存在稳态误差,无法实现精准控制;模糊PID综合了两者的优势,既提高了PID控制器的响应速度和抗干扰能力,又弥补了模糊控制存在稳态误差的缺点,但抗干扰性能还是远不及模糊控制器。因此,当控制精度要求不是很高时,建议使用模糊控制器更好,当需要精准控制且控制误差在允许范围内时,建议使用模糊PID控制器。研究成果对水下机器人工程实践指导具有重要意义。 Fixed-point hovering capability is one of the important control performances of underwater ROV. During underwater motion, ROV is often affected by waves and currents, which makes the conventional motion control unstable. A motion control method with strong anti-interference ability and good adaptability is needed. According to the designed ROV and working requirements, the traditional PID controller, fuzzy controller and fuzzy PID controller are designed. The dynamic performance of each controller under the conditions of sea current, wave and other disturbances is compared by simulation analysis. The test results show that in the fixed-point hovering control, the PID controller has poor adaptability and weak anti-interference ability and is sensitive to environmental changes. The fuzzy controller has good response characteristics and anti-interference ability in complex environments, but has steady state error that cannot achieve precise control. The fuzzy PID combines the advantages of both, which not only improves the response speed and anti-interference ability of the PID controller, but also overcomes the shortcomings of the fuzzy control with steady-state error. However, the anti-interference performance is far less than fuzzy controller. When the control accuracy requirement is not very high, a fuzzy controller is proposed. It is recommended to use a fuzzy PID controller when precise control is required and the control error is within the allowable range. The research results are of great guiding significance to the engineering practice of underwater ROV.
作者 高胜 陈昆 张利巍 范立华 王克宽 Gao Sheng;Chen Kun;Zhang Liwei;Fan Lihua;Wang Kekuan(Machinery Science and Engineering College,Northeast Petroleum University;CNPC Engineering Technology R&D Company Limited)
出处 《石油机械》 北大核心 2019年第2期55-64,共10页 China Petroleum Machinery
基金 中石油"十三五"科技重大专项"中石油水下检测维护机器人系统开发关键技术研究"(GCY-2C-17-6-1)
关键词 ROV PID 模糊控制 模糊PID 波浪 海流 ROV PID fuzzy control fuzzy PID wave sea current
  • 相关文献

参考文献9

二级参考文献43

  • 1彭莉,林鹰,杨奕.复杂系统控制中的相关技术讨论[J].西南师范大学学报(自然科学版),2004,29(6):1066-1068. 被引量:39
  • 2晏勇,马培荪,王道炎,高雪官.深海ROV及其作业系统综述[J].机器人,2005,27(1):82-89. 被引量:55
  • 3刘太杰,崔莉凤,刘载文.污水处理智能控制进展[J].北京工商大学学报(自然科学版),2005,23(3):9-12. 被引量:17
  • 4刘涛,赵禹骅,舒廷飞.复杂系统简约处理的知识库系统设计方法[J].计算机工程,2006,32(3):17-18. 被引量:15
  • 5冯学知 蒋强强.波浪中近水面航行时潜体运动的理论预报与验证[J].中国造船增刊,船舶力学学术委员会成立十周年(1980-1990)船舶流体力学专辑(130-144),1990,.
  • 6Lee C M, Newman J N. First and Second-order Wave Effects on a Submerged Spheroid[ J ]. J S R, 1991,35 (3) : 183-190.
  • 7Haddara M R. Analysis of Coupled Nonlieaner Pitch-roll Motions in Random Seas [ J ]. International Shipbuilding Progress, 1982,29. 333-335.
  • 8Hao Yangling, Shen Donghui, Xiong Zhilan. Design of Submarine Near-surface Depth Controller[ C ]//Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou: [ s. n. ], 2004 : 4530-4533.
  • 9Bin Xu, Pandianm Shunmugham R, Fred Petry. A Sliding Mode Fuzzy Controller for Underwater Vehicle-manipulator System [ C] // Annual Conference of the North American Fuzzy Information Processing Society. [S. l. ] :NAFIPS,2005.181-186.
  • 10刘金昆.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.

共引文献92

同被引文献107

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部