期刊文献+

基于多源机器学习的脱贫方式智能推荐研究 被引量:2

Intelligent Recommendation for Poverty Alleviation Based on Multi-Source Machine Learning
下载PDF
导出
摘要 由于贫困户自主选择帮扶政策和人工推荐帮扶政策缺乏客观性和公正性,难以推荐合理的帮扶政策。因此,利用多种机器学习分类算法和多源集成实现贫困户帮扶政策的智能推荐。结果表明智能算法给出的扶贫方式在帮扶政策的推荐上具有近90%的准确率,有助于政府扶贫工作人员帮助扶贫对象进行帮扶政策的选择,达到精准扶贫的目的。 Due to the lack of objectivity and impartiality of poverty-stricken households'self-selection of support policies and manual recommendation assistance policies,it is difficult to recommend reasonable assistance policies.Therefore,this paper uses a variety of machine learning classification algorithms and multi-source integration to achieve intelligent recommendation of poor households'support policies.The results show that the poverty alleviation methods given by intelligent algorithms have an accuracy rate of about 90%in the recommendation of support policies which could help the government's poverty alleviation workers give the poor reasonable advice about assistance policies and achieve the goal of precision poverty alleviation.
作者 魏嫣娇 易叶青 Wei Yanjiao;Yi Yeqing(Hunan University of Humanities,Science and Technology,Loudi Hunan 417000,China)
出处 《信息与电脑》 2019年第2期37-39,44,共4页 Information & Computer
关键词 精准扶 智能推荐 机器学习 多源集成 precision poverty alleviation intelligent recommendation machine learning multi-source integration
  • 相关文献

参考文献3

二级参考文献40

  • 1阿玛蒂亚·森.贫困与饥荒-论权利与剥夺[M].北京:商务印书馆,2001.14.
  • 2BREIMAN L.Random Forests[J].Machine Learning,2001,45:5-32.
  • 3VAPNIK V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.
  • 4FRANK A,ASUNCION A.UCI Machine Learning Repository[DB/OL].http://archive.ics.uci.edu/ml.
  • 5LIAW A,WIENER M.RandomForest:Breiman and Cut-ler's random forests for classification and regression[CP/OL].http://CRAN.R-project.org/package=randomForest.
  • 6EVGENIA D,KURT H,FRIEDRICH L,et al.E1071:Misc Functions of the Department of Statistics[CP/OL].http://CRAN.R-project.org/package=e1071.
  • 7CHANG C C,LIN C J.LIBSVM:A Library for Support Vector Machines[J].ACM Transactions on Intelligent Sys-tems and Technology,2011,2(3):27:1-27:27.
  • 8KEERTHI S S,LIN C J.Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J].Neural Computa-tion,2003,15(7):1667-1689.
  • 9LIN H T,LIN C J.A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods[R].Department of Computer Science,National Taiwan University,2003.
  • 10MENKE J,MARTINEZ T R.Using Permutations Instead of Student’s t Distribution for p-values in Paired-Differ-ence Algorithm Comparisons[C].Proceedings of2004IEEE International Joint Conference on Neural Networks2004,2:1331-1335.

共引文献342

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部