期刊文献+

基于多媒体信息的双向LSTM情感分析方法

Sentiment Analysis Based on Bi-LSTM with Multimedia Information
下载PDF
导出
摘要 随着信息技术的飞速发展,智慧政务的建设在中国如火如荼地展开。为了更好地服务社会,获取舆论的情感倾向变得至关重要。然而,由于媒体数据的多样性,例如讨论话题、文本正文、正文回复以及文本字数限制等原因,人们不仅要对文本正文进行分析,还必须对文本回复、讨论话题等多样文本信息,以及诸如表情符号、社交关系等因素进行建模。遗憾的是,很少有研究工作针对推文文本的回复及多媒体信息进行建模。本文针对推文正文回复、话题以及多媒体信息,提出一种新的双向长短时记忆网络CBi-LSTM (Content Bi-LSTM)对舆论进行情感分析。实验表明,文本信息和多媒体信息的融合能显著提高情感分析的准确性。 With the rapid development of information technology, the construction of intelligent government is in full swing in China. In order to serve society better, sentiment analysis is to be important in the future. However, due to the variety of the media data, such as the content of tweet, the title of topics, the reply and the limitation of the content, we not only need to analyze the content of tweets, but require to pay attention to some media information, such as reply and topics. While few work study media information to model context, this paper proposes a new model CBi-LSTM (Content Bi-LSTM) to study sentiment classification of multimedia information, such as reply, topic and so on. Experiments show that the fusion of text information and multimedia information can improve sentiment classification remarkably.
作者 丁岩 鲍焱 胡晓 DING Yan;BAO Yan;HU Xiao(Nanjing Zhongxing New Software Co., LTD., Nanjing 210000, China;Jiangsu Key Lab of Big Data Storage and Application, Nanjing 210000, China)
出处 《计算机与现代化》 2019年第2期88-92,共5页 Computer and Modernization
关键词 多媒体信息 情感分析 双向长短记忆网络 multimedia information sentiment analysis Bi-LSTM
  • 相关文献

参考文献1

二级参考文献25

  • 1M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 2Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 3M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.
  • 4H. Yu, V. Hatzivassiloglou. Towards Answering O- pinion Question: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences[C]// EMNLP'03 : 129-136.
  • 5Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up? sentiment classification using machine learning techniques[C]//ACL'02: 79-86.
  • 6Bo Pang, Lillian Lee. A sentimental education: Senti- ment analysis using subjectivity summarization based on minimum cuts[C]//ACL'04: 271-278.
  • 7E. Riloff, J. Wiebe. 2003. Learning extraction pat-terns for subjective expressions[C]//EMNLP'03: 105- 112.
  • 8Glance, N. , M. Hurst, K. Nigam, et al. 2005. Deri- ving marketing intelligence from online discussion [C]//SIGKDD'05 : 419-428.
  • 9Wilson, T. , J. Wiebe, P. Hoffmann. 2005. Recog- nizing contextual polarity in phrase-level sentiment a- nalysis[C]//HLT-EMNLP'05 .. 347-354.
  • 10Luciano Barbosa, Junlan Feng. 2010. Robust Senti- ment Detection on Twitter from Biased and Noisy Da- ta[C]//Coling 2010 (poster paper) : 36-44.

共引文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部