期刊文献+

溶胶-凝胶法制备掺钒ZnO纳米粉 被引量:2

Synthesis of Vanadium Doped ZnO Nanopowder by Sol-Gel Method
下载PDF
导出
摘要 采用溶胶-凝胶法制备了掺钒(V)(V的原子数分数为2.5%)的ZnO纳米粉体。研究了不同热处理工艺对样品晶体结构和微观形貌的影响。采用X线衍射(XRD)和扫描电子显微镜(SEM)等对纳米粉体进行了分析。结果表明,热处理温度过低或时间过短都严重影响掺钒ZnO纳米粉的晶体结构,且随着热处理时间的增加,晶粒尺寸变大。XRD显示所有样品的晶体结构均为六方纤锌矿结构及(101)择优。由扫描电镜得到样品的晶粒尺寸为65~138nm。各个工艺的样品中,掺杂均匀,V含量与设计值基本一致,且样品中仅含Zn、V、O 3种元素。 The vanadium-doped ZnO nanopowder (the atomic fraction of V is 2.5%) has been prepared by the Sol-Gel method. The effects of different heat treatment processes on the crystal structure and morphology of the samples were investigated. The nanopowder was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the crystal structure of vanadium-doped ZnO nanopowder is seriously affected if the temperature of the heat treatment is too low or the treatment time is too short. In addition, the grain size increases with the increase of heat treatment. The XRD shows that all the samples have hexagonal wurtzite structure and all of which are (101)-preferred orientation. The grain sizes of the sample are in the range of 65~ 138 nm by SEM. In the samples of each process, the doping is uniform, the V content is basically the same as the design value, and the samples contain only three elements of Zn, V and O.
作者 樊青青 李东宁 李俊红 FAN Qingqing;LI Dongning;LI Junhong(Institute of Acoustic, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China)
出处 《压电与声光》 CAS 北大核心 2019年第1期61-63,67,共4页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(11474304 11874388)
关键词 溶胶-凝胶法 纳米粉体 掺钒ZnO 热处理工艺 Sol-Gel nanopowder vanadium-doped ZnO heat treatment process
  • 相关文献

参考文献1

二级参考文献19

  • 1桑恩方,乔钢.基于声矢量传感器的水声通信技术研究[J].声学学报,2006,31(1):61-67. 被引量:14
  • 2Xue Chenyang, Chen Shang, Zhang Wendong et al. De- sign, fabrication, and preliminary characterization of a novel MEMS bionic vector hydrophone. Microelectronics Journal, 2007; 38(10): 1021-1026.
  • 3Zhang Guojun, Wang Panpan, Guan Linggang et al. Im- provement of the MEMS bionic vector hydrophone. Micro- electronics Journal, 2011; 42(5): 815-819.
  • 4Guan Linggang, Zhang Guojun, Xu Jiao et al. Design of T-shape vector hydrophone based on MEMS. Sensors and Actuators A, 2012; 188(1):35-40.
  • 5Li Jinping, Chen Lijie, Gong Zhanjiang et al. A low-noise MEMS acoustic vector sensor. 2013 International Con- ference on Optoelectronics and Microelectronics (ICOM), 2013:121-124.
  • 6Zhou Xiaofeng, Che Lufeng, Liang Shenglin et al. Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure. Microelectronic Engineering, 2015; 131(1):51- 57.
  • 7Dai Gang, Li Mei, He Xiaoping et al. Thermal drift anal- ysis using a multiphysics model of bulk silicon MEMS ca- pacitive accelerometer. Sensors and Actuators A, 2011; 172(2): 369-378.
  • 8Li Wei, Song Zhaohui, Li Xiaolin et al. A novel sandwich capacitive accelerometer with a double-sided 16-beam-massstructure. Microelectronic Engineering, 2014; 115(1): 32-38.
  • 9Hindrichsen C C, Larsen J, Thomsen E V et al. Circular piezoelectric accelerometer for high band width applica- tion. IEEE SENSORS Conference, 2009:475-478.
  • 10Yu H G, Zou L, Deng K et al. Lead zirconate titanate MEMS accelerometer using interdigitated electrodes. Sen- sots and Actuators A: Physical, 2003; 107(1): 26-35.

共引文献4

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部