期刊文献+

基于显著性区域的红外行为识别 被引量:2

Infrared action recognition method based on saliency region
下载PDF
导出
摘要 视频特征的提取是行为识别方法中一个关键步骤,当视频场景中存在无关行人或者背景干扰时,提取的特征往往会包含较多的干扰信息,这将严重影响分类器的分类效果,进而影响行为识别准确率。针对这类问题,提出了一种基于显著性区域的红外行为识别方法。该方法对视频序列提取光流运动历史图(optical flow-motion history image,OF-MHI)特征,获取视频序列的运动信息,此步骤旨在消除图像背景及静止目标干扰。利用类别激活映射(class activation map,CAM)方法进一步消除运动目标干扰,获得兴趣目标显著性区域,进而获得显著性区域特征图。输入卷积神经网络(convolutional neural network,CNN)提取最终特征,并采用支持向量机(support vector machine,SVM)获得识别结果。与传统方法相比,实验结果表明,该方法有效地提升了识别准确率。 The extraction of video features is a key step in action recognition methods. However, when unrelated pedestrians or backgrounds exist in the scene, the extracted features often contain more interference information, which leads to low recognition accuracy. To solve this problem, this paper proposes an infrared action recognition method based on saliency region. Firstly, the proposed method extracts optical flow motion history image (OF-MHI) features from the image sequences, obtaining the motion information of the videos to eliminate the interference of backgrounds and static targets. Then, we use the class activation map (CAM) method to eliminate the interference from moving targets to get saliency regions, thus obtaining significant regional features. Finally, the convolutional neural network (CNN) is used to extract the final features, and then we input the extracted features into the support vector machine (SVM) to obtain the recognition results. Compared with the traditional methods, the experimental results show that the proposed method can effectively improve the recognition accuracy.
作者 王灿 高陈强 杜莲 WANG Can;GAO Chenqiang;DU Lian(Chongqing Key Laboratory of Signal and Information Processing, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2019年第1期128-135,共8页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61571071) 重庆邮电大学大学文峰创新创业项目(WF201404)~~
关键词 行为识别 红外视频 显著性区域 卷积神经网络 action recognition infrared video saliency region convolutional neural network
  • 相关文献

参考文献2

二级参考文献22

  • 1Xu F L, Liu X, Fujimura K. Pedestrian detection and tracking with night vision [ J]. IEEE Trans Intell Transp, 2005, 6(1): 63.
  • 2Nanda H, Davis L. Probabilistic template based pedestri- an detection in infrared videos [C]//Proeeedings o{ IEEE Intelligent Vehicle Symposium (IV), Versailles, France: IEEE, 2002.
  • 3Curio C, Edelbrunner J, Kalineke T, et al. Walking pe- destrian recognition [J]. IEEE Trans Intell Transp, 2000, 1(3): 155.
  • 4Broggi A, Bertozzi M, Fascioli A, et al. Shape-based pe- destrian detection [C]//Proceeding of IEEE Intelligent Vehicles Symposium (IV). Dearborn, MI: IEEE, 2000.
  • 5Gavrila D M. Pedestrian detection from a moving vehicle [J]. LNCS, 2000, 1843: 37.
  • 6Gavrila D M, Munder S. Multi-cue pedestrian detection and tracking from a moving vehicle [J] Int J Comput Vi- sion, 2007, 73(1): 41.
  • 7Gavrila D M, Giebel J, Munder S. Vision-based pedestri- an detection: the PROTECTOR system [C]/ Proceed- ing of IEEE Intelligent Vehicles Symposium (IV). Par- ma, Italy: IEEE, 2004.
  • 8Cutler R, Davis L S. Robust real-time periodic motion detection, analysis and applications -J. IEEE Tpami, 2000, 22(8): 781.
  • 9C-e J F, Luo Y P, Gyomei T. Real-time pedestrian detec- tion and tracking at nighttime for driver-assistance sys- tems [J]. IEEE Trans Intell Transp, 2009, 10(2) : 283.
  • 10Liu Q, Zhuang J J, Kong S F. Detection of pedestrians for far-infrared automotive night vision systems using learning-based method and head validation[J]. Meas Sci Technol, 2013. 24(7): 74022.

共引文献8

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部