期刊文献+

高光谱目标表述的不均衡数据多示例学习方法

Multiple Instance-Based Learning Method for Imbalanced Data in Hyperspectral Target Representation
下载PDF
导出
摘要 高光谱目标表述是高光谱目标检测中的核心问题。在众多高光谱目标表述方法中,多示例学习方法(MIL)由于不需要精确的像素级语义标签等因素,而成为研究高光谱目标表述的一个有效方法。但是,面向高光谱目标表述的多示例学习方法中,存在正包内目标示例远少于背景示例的示例级数据不均衡问题,导致学习到的目标表述性能不佳。为此,提出一种面向不均衡数据的多示例学习方法,提取每个包中最可能为正的示例组成正示例集,以此为基础合成新的正样本,增加正样本在正包中所占比例,改善高光谱目标表述能力。在真实高光谱数据上验证所提方法的有效性,结果表明该方法使正包样本组成更均衡,从而学习到更正确的目标表述,提高目标检测的性能。 Target representation is the key process for hyperspectral target detection.Many methods have been proposed for better target representation.Among these methods,multiple instance-based learning method(MIL)is an effective one as it does not require pixel-level semantic labels.However,traditional MIL-based hyperspectral target representation methods usually cause the instance-level data imbalance because of the limited target instances and too many background instances in positive bags,leading to poor performance on hyperspectral target representation.To overcome this problem,a data imbalanced multiple instance learning-based method is proposed in this paper.First,a positive sample set with the most probably positive sample in each package will be constructed;then,new positive samples will be synthetized to increase the proportion of positive samples in the positive packages,balancing the positive and negative samples in positive packages,improving the representational ability.Experiments over real-world hyperspectral dataset validate the effectiveness of the proposed method and the experiment results show that the proposed method can enforce the balance of the positive packages and learn target representation more accurately which improves the target detection performance.
作者 单嘉欣 龚智强 钟平 SHAN Jiaxin;GONG Zhiqiang;ZHONG Ping(College of Electrical Science and Engineering,National University of Defense Technology,Changsha Hunan 410073,China)
出处 《图学学报》 CSCD 北大核心 2018年第6期1028-1035,共8页 Journal of Graphics
基金 国家自然科学基金项目(61671456)
关键词 高光谱 目标表述 多示例学习 不均衡 hyperspectral target representation multiple instance learning imbalance
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部