期刊文献+

一种应用于大角度变换点云的配准方法 被引量:1

A Registration Method for Large-Angle PointClouds
下载PDF
导出
摘要 针对传统配准法不能很好解决大角度变换点云的配准这一问题,提出一种基于精确对应特征点对及其K邻域点云的配准方法。首先分别计算两组点云的FPFH值,根据特征值建立点云间的对应关系;然后通过RANSAC滤除其中错误的匹配点对,得到相对精确的特征点对集合;之后通过KD-tree搜索的方式分别找出特征点对R半径邻域内的点,应用ICP算法得到两部分点云的最优收敛;最后将计算得到的相对位置关系应用到原始点云上得到配准结果。通过对斯坦福大学点云库中Dragon、HappyBuddha模型以及Kinect采集的石膏像数据进行配准和比较,实验表明该方法能够有效解决大角度变换点云的配准问题,是一种具有高精度和高鲁棒性的三维点云配准方法。 To the problem of traditional registration algorithm are difficult to get the desired effect in large-angle pointcloud registration.We proposed a registration method based on exact correspondence feature point pairs and its K-neighbour pointclouds.Firstly,calculate the FPFH of the pointclouds separately,establishing correspondences between point clouds According to the eigenvalues;Then remove the erroneous matching point pairs by RANSAC,and obtain a relatively accurate set of feature point pairs;Moreover,using KD-tree search get the R-Rad region of the feature point pairs respectively,and applying ICP to obtain the optimal convergence of pointclouds.Finally,applying the ICP relative position relationship to the original pointclouds to get the final registration result.Through registration testing and comparison of the Stanford Dragon,Happy Buddha pointcloud models,and Gypsum data scanned by Kinect,The experiment shows that this method can effectively solve the registration problem of pointclouds with large angle transformation,its a 3D pointclouds registration method with high accuracy and robustness.
作者 李健 杨静茹 何斌 LI Jian;YANG Jingru;HE Bin(School of Electrical and Information Engineering,Shaanxi University of Science & Technology,Xi'an Shaanxi 710021,China;School of Electronics and Information Engineering,Tongji University,Shanghai 201804,China)
出处 《图学学报》 CSCD 北大核心 2018年第6期1098-1104,共7页 Journal of Graphics
基金 国家自然科学基金项目(51538009) 陕西省工业攻关项目(2015GY044)
关键词 点云配准 快速点特征直方图 随机采样一致 迭代最近点 KD-TREE pointcloud registration fast point feature histograms random sample consensus iterativeclosest point KD-tree
  • 相关文献

参考文献3

二级参考文献26

  • 1蒋睿嵩,魏发远,冯大勇,闫茂振.一种权值约束的精确配准算法[J].图学学报,2014,35(2):167-172. 被引量:5
  • 2朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 3Arun K S,Huang T S,Blostein S D.Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1987
  • 4Rusinkiewicz S,Levoy M.Efficient variants of the ICP algorithm. Third International Conference on 3-D Digi- tal Imaging and Modeling . 2001
  • 5Dror Aiger,Niloy J. Mitra,Daniel Cohen-Or.4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics (TOG) . 2008 (3)
  • 6Helmut Pottmann,Stefan Leopoldseder,Michael Hofer.Registration without ICP[J]. Computer Vision and Image Understanding . 2004 (1)
  • 7Agarwal,Sharir.The Number of Congruent Simplices in a Point Set[J]. Discrete & Computational Geometry . 2002 (2)
  • 8Gérard Blais,Martin D. Levine.Registering Multiview Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1995
  • 9Kung S Y,Arun K S,Rao D V B.State space and SVD based approximation methods for the harmonic retrieval problem. Journal of the Optical Society of America . 1983
  • 10Martin A. Fischler,Robert C. Bolles.Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM . 1981

共引文献21

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部