期刊文献+

基于发送时延自适应抖动的多信道MAC协议 被引量:1

Multi-channel Media Access Control Protocol Based on Sending Delay Adaptive Jitter
下载PDF
导出
摘要 为保障机载自组网中各类飞行器在执行情报侦察、态势感知等任务时业务的低时延、高可靠、大容量的需求,提出一种新的多信道媒质接入控制协议。该协议采用时延抖动算法并根据信道负载自适应动态调整抖动窗口,利用多信道机制,使协议在有效保障系统稳定吞吐量的同时降低分组接入时延。通过建立分组排队阶段的M/G/1/K模型及信道接入阶段抖动状态的二维马尔科夫链模型,得到任一时隙有分组接入信道的概率,最终推导出分组成功传输概率、端到端时延和系统吞吐量的数学表达式。仿真结果表明,该协议可满足机载自组网传输业务的性能需求,验证了所建模型和理论推导的正确性。 In order to ensure the low delay,high reliability and large capacity of the various types of aircraft in the airborne ad hoc network when performing intelligence reconnaissance and situational awareness tasks,a new multi-channel Medium Access Control(MAC) protocol is proposed.The delay jitter algorithm is used to adaptively adjust the jitter window according to the channel load,and combining with the multi-channel mechanism,the protocol can effectively ensure the stable throughput of the system while reducing the grouping access delay.By establishing the M/G/1/K model of the grouping queuing phase and the two-dimensional Markov chain model of the jitter state of the channel access phase,the probability of having a grouping access channel in any time slot is obtained,and mathematical expression of successful grouping transmission probabilty,end-to-end delay and system throughput are derived.Simulation results show that the protocol can satisfy the performance requirements of the airborne ad hoc network transmission service,and verifies the correctness of the model and theoretical derivation.
作者 刘炜伦 张衡阳 郑博 秦智康 LIU Weilun;ZHANG Hengyang;ZHENG Bo;QIN Zhikang(Information and Navigation College,Air Force Engineering University,Xi’an 710077,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期101-106,113,共7页 Computer Engineering
基金 航空科学基金(20150896010 20161996010)
关键词 机载自组网 多信道 负载 时延抖动 自适应 马尔科夫链 airborne ad hoc network multi-channel load delay jitter self-adaption Markov chain
  • 相关文献

参考文献3

二级参考文献40

  • 1Yost R. Airborne Internet: Network in the Sky[EB/OL]. [2003-12-05]. http://www, airborneinternet, org.
  • 2VSAF Airborne Network Special Interest Group. Airborne Network Architecture-System Communication Description and Technical Architecture Profile[R]. Version 1.1. 2004.
  • 3Schiavone L J. Airborne Networking Approaches and Challenges[C]//Proc of IEEE Military Communications Conf, 2004: 404 -408.
  • 4Wang Yang, Zhao Y J, Fundamental Issues in Systematic Design of Airborne Networks for Aviation[C]//Proc of Aerospace Conf, 2006:8.
  • 5Epstein B, Mehta V. Free Space Optical Communications Routing Performance in Highly Dynamic Airspace Environment[C]//Proc of IEEE Aerospace Conf, 2004 :1398-1406.
  • 6Young C D. USAP Multiple Access: Dynamic Resource Allocation for Mobile Multihop Multichannel Wireless Networking[C]//Proc of IEEE Milcom'99,1999 : 271-275.
  • 7Zhu C, Corson M S. A Five-Phase Reservation Protocol (FPRP) for Mobile ad Hoc Networks[C]//Proc of IEEE INFOCOM' 98,1998: 322-331.
  • 8Tang Z, Gareia-Luna-Aceves J J. A Protocol for Topology- Dependent Transmission Aeheduling in Wireless Networks [C]//Proc of IEEE WCNC'99,1999:1333-1337.
  • 9Jiang Shengming, He Dajiang, Ling Xinhua,et al. A Simple Distributed Pram for Manets[J]. IEEE Trans on Vehicular Technology, 2002 : 293-305.
  • 10Fang J C, Kondylis G D. A Synchronous, Reservation Based Medium Access Control Protocol for Multiple Wireless Networks[C]//Proc of IEEE WCNC'03,2003 : 994-998.

共引文献19

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部