期刊文献+

基于深度高斯过程的多元类别数据分布估计

Multivariate Categorical Data Distribution Estimation Based on Deep Gaussian Process
下载PDF
导出
摘要 多元类别数据的可能取值会随向量长度的增长呈指数级增长,从而造成数据稀疏性问题。通过将观察数据嵌入到连续空间中训练识别数据之间的相似性,构建多元类别数据的线性高斯隐变量模型和类别隐高斯过程(CLGP)。在CLGP模型基础上,建立小样本多元类别数据分布估计的多元类别深度隐高斯过程模型,并结合蒙特卡洛采样的变分推断方法对模型进行参数优化。实验结果表明,与CLGP模型相比,该模型分布估计精确度有所提升。 The possible value of multivariate categorical data increases exponentially with the length of the vector,resulting in data sparsity.The similarity between the identified data is trained by embedding the observation data into the continuous space,and the linear Gaussian hidden variable model and the Categorical Latent Gaussian Process (CLGP) of the multi-category data are constructed.Based on the CLGP model,a multi-class deep hidden Gaussian process model for small sample multi-class data distribution estimation is proposed,and the parameters are optimized by Monte Carlo sampling.Experimental results show that compared with the CLGP model,this model distribution estimation accuracy has improved.
作者 刘姝君 李艳婷 LIU Shujun;LI Yanting(School of Mechanical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期160-166,共7页 Computer Engineering
基金 国家自然科学基金面上项目"多元复杂时空数据建模与监控方法研究"(71672109)
关键词 多元类别数据 生成式模型 深度高斯过程 无监督学习 变分推断 multivariate categorical data generative model Deep Gaussian Process(DGP) unsupervised learning variational inference
  • 相关文献

参考文献4

二级参考文献91

  • 1周勇,巩敦卫,郝国生,郭一楠,孙晓燕.交互式遗传算法基于NN的个体适应度分阶段估计[J].控制与决策,2005,20(2):234-236. 被引量:22
  • 2金龙,吴建生,林开平,陈冰廉.基于遗传算法的神经网络短期气候预测模型[J].高原气象,2005,24(6):981-987. 被引量:40
  • 3苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 4Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
  • 5Kocijan J. Control algorithms based on Gaussian process models: A state-of-the-art survey[C].Proc of the Special Int Conf on Complex Systems: Synergy of Control, Communications and Computing. Ohrid, 2011: 69-80.
  • 6Park C W, Huang J H Z, Ding Y. Domain decomposition approach for fast Gaussian process regression of large spatial data sets[J]. J of Machine Learning Research, 2011, 12: 1697-1728.
  • 7He Z K, Liu G B, Zhao X J, et al. Temperature model for FOG zero-bias using Gaussian process regression[J]. Advances in Intelligent Systems and Computing, 2012, 180: 37-45.
  • 8Snelson E. Flexible and efficient Gaussian process models for machine learning[D]. London: Gatsby Computational Neuroscience Unit, University of London, 2007.
  • 9Williams C K I, Seeger M. Using the Nystrom method to speed up kernel machines[C]. Proc of the Int Conf on Advances in Neural Information Processing Systems(NIPS) 13. Denver, 2001: 682-688.
  • 10Wahba G. Spline models for observational data[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1990: 95-100.

共引文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部