期刊文献+

基于双稀疏优化的空域错误隐藏

Spatial Error Concealment Based on Coupled Sparse Optimization
下载PDF
导出
摘要 现有空域错误隐藏算法通常利用线性插值或者常规稀疏表达恢复丢失像素,但线性插值在恢复不平滑图像时因邻域信息不一致导致恢复图像模糊,而常规稀疏表达因字典构建不当造成丢失像素重建效果较差。为此,提出一种改进的空域错误隐藏算法,采用动态阈值搜索潜在集合和模板集合提高字典构建精度,利用典型相关分析获得双稀疏优化的初值,通过稀疏重建恢复丢失像素。实验结果表明,与现有主流算法相比,该算法的峰值信噪比至少提高1. 23 dB,具有较好的错误隐藏效果。 Linear interpolation algorithm or conventional sparse representation algorithm are used to recover the lost pixels currently.However,linear interpolation restores image blur due to inconsistent neighborhood information when restoring unsmooth images.For the conventional sparse representation algorithm,improper dictionary construction will result in a poor recovered image quality.To solve these problem,an improved spatial error concealment algorithm is proposed.The proposed algorithm optimizes the process of potential set and template set search by means of dynamic threshold searching,which improves the precision of the constructed dictionary.It can obtain the value of double sparse optimization using Canonical Correlation Analysis(CCA),and recover lost pixels by sparse reconstruction.Experimental results show that the proposed algorithm improves the Peak Signal to Noise Ratio(PSNR) by at least 1.23 dB compared with the current mainstream algorithm,and has a good error hiding effect.
作者 严静文 肖晶 高戈 YAN Jingwen;XIAO Jing;GAO Ge(National Engineering Research Center for Multimedia Software,Wuhan University,Wuhan 430072,China;School of Computer,Wuhan University,Wuhan 430072,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期245-249,共5页 Computer Engineering
基金 国家自然科学基金(61471271)
关键词 空域错误隐藏 线性插值 I帧丢失 字典构建 稀疏优化 spatial error concealment linear interpolation I-frame loss dictionary construction sparse optimization
  • 相关文献

参考文献3

二级参考文献43

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 3Hou Zi-qiang. Issues of IPTV's location and development [ A]. In: The IPTV World Forum 2006 [ C ], London, UK, 2006.
  • 4ITU_T Recommendation P. 901. Subjective Video Quality Assessment Methods for Multimedia Applications [ EB/OL ]. http: //www. itu. int.
  • 5Wu H R, Lambrecht C, Yuen M, et al. Quantitative quality and impairment metrics for digitally coded images and image sequences [A]. In: Proceedings of Australian Telecommunication Networks & Applications Conference [ C ] , Melbourne, Australia, 1996 : 389-394.
  • 6Christian J. van Den Branden Lambrecht, Olivier Verscheure. Perceptual quality measure using a spatio-temporal model of the human visual system [ A ]. In: Proceedings of the SPIE[ C ], San Jose, CA, USA, 1996: 450-461.
  • 7Mohamed S, Rubino G, Cervantes F, et al. Real-time video quality assessment in packet networks: A neural network model [ A ]. In: Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) [ C ] , Las Vegas, Nevada, USA, June, 2001 : 1071-1083.
  • 8Reibman Amy R, Vaishampayan Vinay A, Sermadevi Yegnaswamy. Quality monitoring of video over a packet network [ J ] . IEEE Transactions on Multimedia, 2004, 6(2) : 327-334.
  • 9Verscheure Olivier, Frossard Pascal, Hamdi Maher. MPEG-2 video services over packet networks: Joint effect of encoding rate and data loss on user-oriented QoS [ A] . In: Proceedings of the 8th International Workshop on Network and Operating Systems Support for Digital Audio and Video[ C ], Cambridge, UK, 1998: 257-264.
  • 10ISO/IEC JTC1/SC29 CD 13818-1,2,3. Information Technology- Generic Coding of Moving Pictures and Associated Audio Information- Part 1, 2 and3 [S].

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部