期刊文献+

多尺度空间金字塔池化PCANet的行人检测 被引量:9

Pedestrian Detection Using Multi-scale Principal Component Analysis Network of Spatial Pyramid Pooling
下载PDF
导出
摘要 针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类器。在INRIA和NICTA数据库中,与HOG、CNN等算法进行行人检测对比实验,结果表明,该算法有更高的正确检测率、更低的漏检率和误检率。 Pedestrian detection is easily affected by non-ideal factors such as complex background,shooting angle and diversity of human body posture in natural environment.To solve this problem,this paper proposes a Multi-scale Principal Component Analysis Network of Spatial Pyramid Pooling (MS-PCANet-SPP).The feature pooling layer using spatial pyramid pooling method extract the saliency features of the image.The multi-scale features of the input samples can be obtained by cascading the high-level and low-level features,which is input to the SVM classifer.The comparative experiments are performed in the INRIA and NICTA databases.Experimental results show that,compared with HOG,CNN and other algorithms,MS-PCANet-SPP has a higher detection rate,a lower miss rate,and a lower false positive rate.
作者 夏胡云 叶学义 罗宵晗 王鹏 XIA Huyun;YE Xueyi;LUO Xiaohan;WANG Peng(Lab of Pattern Recognition and Information Security,Hangzhou Dianzi Universtiy,Hangzhou 310018,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第2期270-277,共8页 Computer Engineering
基金 国家自然科学基金(60802047 60702018)
关键词 行人检测 深度学习架构 主成分分析网络 多尺度特征 空间金字塔池化 显著性特征 pedestrian detection deep learning framework Principal Component Analysis Network(PCANet) multi-scale feature spatial pyramid pooling saliency feature
  • 相关文献

参考文献3

二级参考文献70

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献776

同被引文献72

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部