期刊文献+

开映像定理的改良证明研究

Research on improved proof of open mapping theorem
下载PDF
导出
摘要 为研究方程Tx=y解的稳定性,开映像定理将问题转化为研究映像T能否将开集映为开集.针对定理的证明,不再依据较抽象的对称凸集的性质,而是通过概念的等价转化,利用Banach空间的完备性,采用集合的平移及其运算性质,结合非疏集的定义以及算子的有界线性性质,并且使用逐次逼近的方法进行推理证明,从而得出满足T是开映像的充分条件,进而得到使得方程Tx=y的解稳定的条件. In order to study the stability of the solution of the equation Tx=y,the open mapping theorem transforms the problem into the study of whether the open set can be mapped by the mapping T.For the proof of the theorem,this paper no longer based on the properties of the more abstract symmetric convex set,but used the equivalent transformation of the concept,utilized the completeness of Banach space,used the translation of the set and its operation properties,and combined the definition of non-sparse sets and the bounded linear properties of operators.Furthermore,the method of successive approximation was used to prove the reasoning.It was concluded that satisfying T was a sufficient condition for the image to be opened,and the condition for stabilizing the solution of the equation Tx=y was obtained.
作者 庄桂敏 ZHUANG Gui-min(School of Science,Jiamusi University,Jiamusi 154007,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2019年第1期114-116,共3页 Journal of Harbin University of Commerce:Natural Sciences Edition
关键词 BANACH空间 第二纲集 非疏集 Baire纲定理 线性算子 开映像 Banach space second category set non-sparse set Baire category theorem linear operator open mapping
  • 相关文献

参考文献8

二级参考文献19

  • 1王国俊,白永成.平移空间的线性结构[J].数学学报(中文版),2005,48(1):1-10. 被引量:32
  • 2孙经先,刘立山.非线性算子方程的迭代求解及其应用[J].数学物理学报(A辑),1993,13(2):141-145. 被引量:109
  • 3张晓燕,孙经先.一类非线性算子方程解的存在唯一性及其应用[J].数学物理学报(A辑),2005,25(6):846-851. 被引量:14
  • 4谭小江,伍胜健.复变函数简明教程[M].北京大学出版社.2007.
  • 5霍承刚.对一类拓扑空间的研究.西部论坛,2010,:157-157.
  • 6Armstrong M A.基础拓扑学[M].北京:北京大学出版社,1983.
  • 7关波.G空间与开映射定理[J].数学杂志,1986,6(2):157-164.
  • 8Taylor A E. Introduction to Fuctional Analysis[M]. 2th ed. New York :John Wiley & Sons, 1980.
  • 9Ptak V. Completeness and the open mapping theorem[J]. Bull Soc Math, 1958(86):41-74.
  • 10Husain T. S-spaces and the open mapping theorem[J]. Pacific J Math, 1962,12 (1) :253-271.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部