期刊文献+

一类具有媒体报道的传染病模型 被引量:1

A Class of Epidemic Model with Media Coverage
下载PDF
导出
摘要 将媒体报道量M视为时间t的函数,利用非连续函数β/(1+εMI)来刻画媒体报道对传染率的影响,建立了一个分段光滑的SIM传染病模型,给出了模型的非负平衡点的存在性。利用微分方程线性化稳定性理论分析,得到了系统的各平衡点局部稳定的阈值条件,并进一步利用Poincare-Bendixon定理给出了正平衡点全局渐近稳定的充分条件。 In this paper,the media coverage M is considered as a function of time t.Using discontinuous functionβ/(1+εMI)to describe the influence of media coverage on the infection rate,a piecewise-smooth SIM epidemic model is established.The existence of the nonnegative equilibrium of the model is given.The local stability of the equilibrium of the system is obtained by using the linear stability theory of differential equations.A sufficient condition for global asymptotic stability of positive equilibrium is given by using the Poincare-Bendixon theorem.
作者 陈娟 戴斌祥 李文秀 CHEN Juan;DAI Binxiang;LI Wenxiu(School of Science,Jimei University,Xiamen 361021,China;School of Mathematics and Statistics,Central South University,Changsha 410083,China;School of Mathematics and Econometrics,Hunan University,Changsha 410082,China)
出处 《集美大学学报(自然科学版)》 CAS 2019年第1期64-67,共4页 Journal of Jimei University:Natural Science
基金 国家自然科学基金项目(51479215 11271371)
关键词 媒体报道 传染病模型 局部稳定性 全局稳定性 media coverage epidemic model local stability global stability
  • 相关文献

参考文献1

二级参考文献15

  • 1Czene K, Reilly M, Hall P, Hartman M. A constant risk for familial breast cancer? a popula- tion-based family study[ J ]. Breast Cancer Res, 2009, 11 (3) : R30.
  • 2Meyer-Rienecker H, Buddenhagen F. Incidence of multiple sclerosis: a periodic orstable phe- nomenon[J]. JNeurol, 1988, 235(4) : 241-244.
  • 3Neaigus A, Jenness S M, Hagan H, Murrill C S, Torian L V, Wendel T, Gelpi-Acosta C. Esti- mating HIV incidence and the correlates of recent infection in venue-sampled men who have sex with men in New York city[J]. AIDS Behav, 2012, 16(3) : 515-524.
  • 4Liu R, Wu J, Zhu H. Media/psychological impact on multiple outbreaks of emerging infec- tious diseases[J]. Comput Math Methods Med, 2007, 8(3) : 153-154.
  • 5Xiao D, Ruan S. Global analysis of an epidemic model with nonmonotone incidence rate [ J J. Math Biosci, 2007, 208(2): 419-429.
  • 6Li B, Yuan S, Zhang W. Analysis on an epidemic model with a ratio-dependent nonlinear inci- dence rate[J]. Int JBiomath, 2011,4(2) : 227-239.
  • 7Sun C, Yang W, Arinoa J, Khan K. Effect of media-induced social distancing on disease transmission in a two patch setting[ J]. Math Biosci, 2011, 2:}0(2) : 87-95.
  • 8Cui J, Sun Y, Zhu H. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2008, 20( 1 ) : 31-53.
  • 9Tchuenche J M, Bauch C T. Dynamics of an infectious disease where media coverage influ- ences transmission[ J]. ISRNBiomathematics, 2012, 2012: Article ID 581274, l0 Pages. doi: 10. 5402/2012/581274.
  • 10Zou W, Xie J. An SI epidemic model with nonlinear infection rate and stage structure [J]. Int JBiomath, 2009, 2(1) : 19-27.

共引文献39

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部