期刊文献+

基于基础词典扩展的中文酒店评论情感分析 被引量:7

Sentiment Analysis of Chinese Hotel Reviews Based on the Extended basic Dictionary
下载PDF
导出
摘要 针对中文酒店评论自身特点设计语料特征,将评论高频词赋予权重并扩展基础情感词典;结合扩展基础情感词典和语义规则,计算情感加权值,实现对酒店频率褒贬倾向分析;选取Boson和大连理工情感词典作为基础情感词典进行了试验。试验结果表明,利用本方法进行中文酒店评论情感分析的精准率可达到90%以上,相比基础情感词典,可提高10%,且加入前50个高频词扩展基础情感词典,对精准率有较大提升,之后精准率的提升速度趋于平缓。 According to the characteristics of Chinese hotel reviews, the corpus features are designed, the high frequency words of reviews are weighted and the basic emotion dictionary is extended. Then, based on the extended basic emotion dictionary and semantic rules, the weighted value of sentiment is calculated to realize the analysis of the appraisal tendency by selecting the Boson and Dalian Sentiment Dictionaries as the foundation of the sentiment dictionary. The test results show that using the method presented in this paper to conduct sentiment analysis of Chinese hotel reviews, the accuracy rate can reach more than 90%. Compared with the basic sentiment dictionary, the accuracy rate can be increased by 10%, and the top 50 high-frequency words are added to expand the basic dictionary, which greatly improves the accuracy rate, and then the accuracy rate increases gradually.
作者 杨飞 吴颖丹 王鑫颖 YANG Fei;WU Yingdan;WANG Xinying(Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Wuhan 430068, China;School of Science, Hubei Univ. of Tech., Wuhan 430068, China)
出处 《湖北工业大学学报》 2019年第1期107-110,共4页 Journal of Hubei University of Technology
基金 国家自然科学基金(61301278) 湖北省自然科学基金(2018CFB540) 太阳能高效利用湖北省协同创新中心开放基金(HBSKFM2014001)
关键词 情感分析 中文酒店评论 情感词典 词典扩展 sentiment analysis Chinese hotel reviews sentiment dictionary extended dictionary
  • 相关文献

参考文献6

二级参考文献80

  • 1张珊,于留宝,胡长军.基于表情图片与情感词的中文微博情感分析[J].计算机科学,2012,39(S3):146-148. 被引量:55
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3Nasukawa T, Jeonghee Y. Sentiment Analysis: Capturing Favorability Using Natural Language Processing[C]//Proc. of K-CAP'03. Sanibel Island, Florida, USA: [s. n.], 2005: 23-35.
  • 4Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews[C]//Proceedings of EMNLP'05. Vancouver, Canada: [s. n.], 2005: 145-153.
  • 5Liu Bing, Hu Minqing, Cheng Junsheng. Opinion Observer: Analyzing and Comparing Opinions on the Web[C]//Proceedings of the 14th International Conference on World Wide Web. [S.l.]: IEEE Press, 2006: 221-229.
  • 6Kim Soo-Min, Hovy E. Extracting Opinions, Opinion Holders, and Topics Expressed in Online News Media Text[C]//Proc. of Conf. of Association for Computational Lingustics. [S. l.]: IEEE Press, 2007: 318-327.
  • 7Chen S F, Rosenfeld R. A Gaussian Prior for Smoothing Maximum Entropy Models[D]. School of Computer Science, Carnegie Mellon University, 1999.
  • 8M.Q. Hu, B. Liu. Mining and Summarizing Custom- er Reviews[C]//ACM SIGKDD 2004.. 168-177.
  • 9Bo Pang, Lillian Lee. Opinion mining and sentiment a- nalysis[C]//Foundations and Trends in Information Retrieval, 2(1-2):1-135.
  • 10M.Q. Hu, B. Liu. Opinion Extraction and Summari- zation on the Web[C]//AAAI06, Boston: 1621-1624.

共引文献254

同被引文献97

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部