摘要
讨论非线性边界条件的Sobolev方程的一个低阶混合元(Q_(11)+Q_(01)×Q_(10))格式,直接利用单元插值的性质,导出了半离散格式的超逼近性质,同时利用插值后处理技术,导出了相应的O(h^2)阶整体超收敛结果.
In this paper,a low order mixed finite element(Q 11+Q 01×Q 10)formulation of the Sobolev equation with nonlinear boundary conditions is discussed.By utilizing the properties of the interpolation on the two element,the corresponding superclose nature is obtained for semi-discrete scheme.At the same time,the O(h 2)order global superconvergence result is obtained by use of a postprocessing technique.
作者
李先枝
范中广
LI Xianzhi;FAN Zhongguang(School of Mathematics and Statistics,Zhengzhou Normal University,Zhengzhou 450044,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2019年第1期88-92,共5页
Journal of Hangzhou Normal University(Natural Science Edition)
基金
河南省高等学校重点科研项目(18B110021)
关键词
非线性边界条件
SOBOLEV方程
低阶混合元格式
超逼近和超收敛
nonlinear boundary condition
Sobolev equations
a low order mixed finite element formulation
superclose and superconvergence