期刊文献+

基于Simhash的大规模文档去重改进算法研究 被引量:8

Research on Improved Large-scale Documents Deduplication Algorithm Based on Simhash
下载PDF
导出
摘要 针对大规模文档去重算法Simhash存在的缺点和不足,提出一种改进的Simhash算法。首先从多个维度综合计算文档的相似度,包括文档内容、文档关键字、文档的标签、文档的引用文献等方面,定义一个新的公式用于计算文档相似度。其次改进Simhash算法计算文档特征的方法,通过TF-IDF技术和单词的主题相关性综合计算单词的权重,TF-IDF技术用于计算一个关键词在一个文档集中的一篇文档的重要性,将专业术语词汇的长度统计函数作为判断单词主题相关性的依据。最后在检索步骤中采用哈希到桶的思想,此时出现分布不均匀的情况,为此设定一个阈值,当超过阈值时,对桶内的元素进行二次哈希,可以减少候选对的数量并且使分布更加均匀。实验结果表明,改进后的算法可以明显提高原Simhash算法的效率和准确率。 Aiming at the shortcomings and deficiencies of Simhash,we present an improved Simhash algorithm.Firstly,the similarity of documents from multiple dimensions is calculated,including document content,document keywords,document labels and references,and a new formula is defined to calculate document similarity.Secondly,the process of Simhash algorithm calculating document features is improved,and the weight of words is calculated synthetically by TF-IDF technique and the topic relevance of words.TF-IDF technology is used to calculate the importance of a document with a keyword in a document set.The term statistical function of term length is used as the basis for determining the relevance of a word subject.Finally,the idea of hashing to buckets is adopted in the retrieval.At this time,there is an uneven distribution,so a threshold is set.When the threshold is exceeded,the elements in the bucket are hashed twice,which can reduce the number of candidate pairs and make the distribution more evenly.Experiment shows that the improved algorithm can significantly improve the efficiency and accuracy of the traditional algorithm.
作者 王诚 王宇成 WANG Cheng;WANG Yu-cheng(School of Telecommunications&Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
出处 《计算机技术与发展》 2019年第2期115-119,共5页 Computer Technology and Development
基金 江苏省自然科学青年基金(BK20150861)
关键词 Web大数据 Simhash 近似文本检测 多维度 二次哈希 Web big data Simhash approximate text detection multi-dimension secondary hash
  • 相关文献

参考文献7

二级参考文献57

  • 1中国互联网络信息中心.第十六次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn/in-dex/OE/00/11/index.htm,2005,07-01
  • 2Andrei Z. Broder, Steven C. Glassman. Syntactic Clustering of the Web [DB/OL]. http://gatekeeper. research.compaq.com/pub/DEC/SRC/technical--notes/SRC--1997--015 html
  • 3吴军,数学之美系列十三信息指纹及其应用[DB/OL].http://www.googlechinablog.com/2006/08/blog-post.html
  • 4Gurmeet Singh Manku, Arvind Jain, Anish Das Sarma. Detecting Near--Duplicates for Web Crawlng[C]. In ternational World Wide Web Conference, Banff, Alberta, Canada, New York, USA: ACM, 2007: 141-- 150
  • 5Moses S. Charikar, Similarity Estimation Tech niques from Rounding Algorithms[C]. Annual ACM Sym posium on Theory of Computing, Montreal, Quebec, Cana da, New York, USA:ACM, 2002 : 380-388
  • 6Bhagwat D,Pollack K,Long DDE,Schwarz T,Miller EL,P-ris JF.Providing high reliability in a minimum redundancy archival storage system.In:Proc.of the 14th Int'l Symp.on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems (MASCOTS 2006).Washington:IEEE Computer Society Press,2006.413-421.
  • 7Zhu B,Li K.Avoiding the disk bottleneck in the data domain deduplication file system.In:Proc.of the 6th Usenix Conf.on File and Storage Technologies (FAST 2008).Berkeley:USENIX Association,2008.269-282.
  • 8Bhagwat D,Eshghi K,Mehra P.Content-Based document routing and index partitioning for scalable similarity-based searches in a large corpus.In:Berkhin P,Caruana R,Wu XD,Gaffney S,eds.Proc.of the 13th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2007).New York:ACM Press,2007.105-112.
  • 9You LL,Pollack KT,Long DDE.Deep store:An archival storage system architecture.In:Proc.of the 21st Int'l Conf.on Data Engineering (ICDE 2005).Washington:IEEE Computer Society Press,2005.804-815.
  • 10Quinlan S,Dorward S.Venti:A new approach to archival storage.In:Proc.of the 1st Usenix Conf.on File and Storage Technologies (FAST 2002).Berkeley:USENIX Association,2002.89-102.

共引文献303

同被引文献56

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部