期刊文献+

社交媒体平台谣言的早期自动检测 被引量:7

Early Detection of Rumors in Social Media
下载PDF
导出
摘要 在社交媒体服务迅速发展与普及的今天,谣言传播以前所未有的迅猛之势对人类社会产生着巨大的影响。同时,人工智能技术的异军突起,也为社交媒体平台的谣言自动检测提供了可能。谣言检测现有方法通常是,通过学习某条社交媒体信息的所有转发或评论的语义表示,来预测该条社交媒体信息是否为谣言。然而,是否能在谣言引起严重的社会影响之前尽早有效做出判断(谣言早期检测)至关重要,这一问题在以往的研究中尚未得到很好的解决。本文总结了现有社交媒体平台谣言自动检测的主要技术路线,并探讨了进行谣言早期检测的可能性。 With the rapid development and popularization of social media services,rumors are spreading with unprecedented rapidity and have a tremendous impact on human society.Meanwhile,the development of artificial intelligence technologies provides a promising approach for social media platform to automatically detect rumors.Most existing methods of rumor detection typically predict based on all comments when users forward the message.However,it is very important to make an early and effective judgment(i.e.early detection of rumors)before rumors cause serious social impact.This article summarizes existing methods for rumor detection,and explores the possibility of early rumor detection.
作者 刘知远 宋长河 杨成 Zhiyuan Liu;Changhe Song;Cheng Yang(Department of Computer Science and Technology,Tsinghua Unversity;Department of Electronic Engineering,Tsinghua Unversity)
出处 《全球传媒学刊》 2018年第4期65-80,共16页 Global Journal of Media Studies
基金 国家社会科学基金重大招标项目(批准号:13&ZD190)的支持
关键词 谣言 早期检测 深度神经网络 社交媒体 Rumor Early Detection Deep Neural Networks Social Media
  • 相关文献

参考文献2

二级参考文献20

  • 1巢乃鹏,黄娴.网络传播中的“谣言”现象研究[J].情报理论与实践,2004,27(6):586-589. 被引量:145
  • 2Allport G W, Postman L. The Psychology of Rumor. Oxford:Henry Holt, 1947.
  • 3Kapferer J-N. Rumeurs:le Plus Vieux Média du Monde (in French). Paris:Le Seuil Editions, 1987.
  • 4Peterson W A, Gist N P. Rumor and public opinion. American J Soc, 1951, 57:159-167.
  • 5Budak C, Agrawal D, Abbadi A El. Limiting the spread of misinformation in social networks. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 665-674.
  • 6Castillo C, Mendoza M, Poblete B. Information credibility on twitter. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 675-684.
  • 7Nguyen D T, Nguyen N P, Thai M T. Sources of misinformation in online social networks:who to suspect? In:Proceedings of Military Communications Conference. Orlando:IEEE, 2012. 1-6.
  • 8Okazaki N, Nabeshima K, Watanabe K, et al. Extracting and aggregating false information from microblogs. In:Proceedings of the Workshop on Language Processing and Crisis Information, Nagoya, 2013. 36-43.
  • 9Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it:identifying misinformation in microblogs. In:Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2011. 1589-1599.
  • 10Ratkiewicz J, Conover M, Meiss M, et al. Truthy:mapping the spread of astroturf in microblog streams. In:Proceedings of the 20th International Conference Companion on World Wide Web, Byderabad, 2011. 249-252.

共引文献44

同被引文献94

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部