期刊文献+

基于包簇框架的云计算能耗优化算法 被引量:2

Cloud Computing Energy Consumption Optimization Algorithm Based on Package-Cluster Mapping
下载PDF
导出
摘要 文中针对以虚拟机为中心的云计算分配模式中结构复杂、分配困难等问题,采用了一种基于包簇结构的分配框架。在此基础上提出了一个有效的能耗模型,并将二进制粒子群算法进行改进,通过调节自适应的权重,提高了包簇分配算法的速度和准确性。实验表明,改进的二进制粒子群算法在收敛速度和寻优能力方面更加优于传统的二进制粒子群算法。相较于以虚拟机为中心的分配算法,基于包簇框架下的改进二进制粒子群分配算法提升了CPU使用率,有效降低了能耗,更加绿色节能。 Aiming at the problem of flat layout and complex structure in the virtual machine placement strategy,this paper adopted a virtual machine allocation framework based on package-cluster mapping to minimize the energy consumption of all physical machines.Based on this,an effective energy consumption model and an improved binary particle swarm optimization algorithm with adaptive weights were proposed to improve the speed and accuracy of package-cluster mapping framework.Experimental results showed that the improved binary particle swarm optimization algorithm was more superior to traditional binary particle swarm optimization in terms of convergence speed and optimization ability.Compared with the virtual machine allocation algorithm,the improved binary particle swarm allocation algorithm based on the clustering framework increased the CPU usage and effectively reduced energy consumption,which promoted the green energy saving.
作者 陆乐 陈世平 LU Le;CHEN Shiping(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Network and Information Center Office,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《电子科技》 2019年第3期61-66,共6页 Electronic Science and Technology
基金 国家自然科学基金(61472256)~~
关键词 云计算 包簇 粒子群 能耗 资源管理 虚拟机放置. cloud computing package-cluster mapping energy consumption particle swarm optimization resource management virtual machine placement
  • 相关文献

参考文献2

二级参考文献43

  • 1Chert G, He WB, Liu J, Nath S, Rigas L, Xiao L, Zhao F. Energy-Aware server provisioning and load dispatching for connection- intensive Internet services. In: Crowcroft J, Dahlin M, eds. Proc. of the 5th USENIX Syrup. on Networked Systems Design and Implementation (NSDI). San Francisco: USENIX Association, 2008. 337-350.
  • 2Urgaonkar B, Shenoy PJ, Chandra A, Goyal P, Wood T. Agile dynamic provisioning of multi-tier Internet applications. Trans. on Autonomous and Adaptive Systems, 2008,3(1):1-39. [doi: 10.1145/1342171.1342172].
  • 3Orgerie AC, Lef~vre L, Gelas JP. Save Watts in your grid: Green strategies for energy-aware framework in large scale distributed systems. In: Proc. of the 14th Int'l Conf. on Parallel and Distributed Systems (ICPADS 2008), Melbourne: IEEE, 2008. 171-178. Idol: 10.1109/ICPADS.2008.97].
  • 4IBM proj oct big green, http://www-03.ibm.com/press/us/en/pressrelease/21524.wss.
  • 5Using virtualization to improve data center efficiency, http://www.thegreengrid.org/Global/Content/white-papers/Using- Virtualization-to-Improve-Data-Center-Efficiency.
  • 6Rivoire S, Shah MA, Ranganathan P, Kozyrakis C. JouleSort: A balanced energy-efficiency benchmark. In: Chan CY, Qoi BC, Zhou A, eds. Prec. of the ACM SIGMOD Int'l Conf. on Management of Data. B~ijing: ACM Press, 2007. 365-376. Idol: 10.1145/ 1247480.1247522].
  • 7Bahsoon R. Green cloud: Towards a framework for dynamic self-optimization of power and dependability requirements in green cloud architectures. In: Babar MA, Gorton I, eds. Proe. of the 4th European Conf. on Software Architecture (ECSA 2010). Copenhagen, 2010. 510-514.
  • 8Kumar K, Lu YH. Cloud computing for mobile users: Can offloading computation save energy? IEEE Computer, 2010,43(4): 51-56. [doi: 10.1109/MC.2010.98].
  • 9Kelenyi I, Nurminen JK. CloudTorrent--Energy-Efficient BitTorrent content sharing for mobile devices via cloud services. In: Proc. of the 7th IEEE on Consumer Communications and Networking Conf. (CCNC). 2010. 1-2.
  • 10Elnozahy EN, Kistler M, Rajamony R. Energy-Efficient server clusters. In: Falsafi B, Vijaykumar TN, eds. Proc. of the 2nd Int'l Workshop on Power-Aware Computer Systems (PACS 2002). Cambridge: Springer-Verlag, 2003. 179-197. [doi: 10.1007/3-540- 36612-1_12].

共引文献84

同被引文献34

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部